Metamath Proof Explorer


Theorem nn0readdcl

Description: Closure law for addition of reals, restricted to nonnegative integers. (Contributed by Alexander van der Vekens, 6-Apr-2018)

Ref Expression
Assertion nn0readdcl ( ( 𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ) → ( 𝐴 + 𝐵 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 nn0addcl ( ( 𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ) → ( 𝐴 + 𝐵 ) ∈ ℕ0 )
2 1 nn0red ( ( 𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ) → ( 𝐴 + 𝐵 ) ∈ ℝ )