Metamath Proof Explorer


Theorem nn0risefaccl

Description: Closure law for rising factorial. (Contributed by Scott Fenton, 5-Jan-2018)

Ref Expression
Assertion nn0risefaccl ( ( 𝐴 ∈ ℕ0𝑁 ∈ ℕ0 ) → ( 𝐴 RiseFac 𝑁 ) ∈ ℕ0 )

Proof

Step Hyp Ref Expression
1 nn0sscn 0 ⊆ ℂ
2 1nn0 1 ∈ ℕ0
3 nn0mulcl ( ( 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ) → ( 𝑥 · 𝑦 ) ∈ ℕ0 )
4 nn0addcl ( ( 𝐴 ∈ ℕ0𝑘 ∈ ℕ0 ) → ( 𝐴 + 𝑘 ) ∈ ℕ0 )
5 1 2 3 4 risefaccllem ( ( 𝐴 ∈ ℕ0𝑁 ∈ ℕ0 ) → ( 𝐴 RiseFac 𝑁 ) ∈ ℕ0 )