Metamath Proof Explorer


Theorem nn0rp0

Description: A nonnegative integer is a nonnegative real number. (Contributed by AV, 24-May-2020)

Ref Expression
Assertion nn0rp0 ( 𝑁 ∈ ℕ0𝑁 ∈ ( 0 [,) +∞ ) )

Proof

Step Hyp Ref Expression
1 nn0re ( 𝑁 ∈ ℕ0𝑁 ∈ ℝ )
2 nn0ge0 ( 𝑁 ∈ ℕ0 → 0 ≤ 𝑁 )
3 elrege0 ( 𝑁 ∈ ( 0 [,) +∞ ) ↔ ( 𝑁 ∈ ℝ ∧ 0 ≤ 𝑁 ) )
4 1 2 3 sylanbrc ( 𝑁 ∈ ℕ0𝑁 ∈ ( 0 [,) +∞ ) )