Step |
Hyp |
Ref |
Expression |
1 |
|
nn0seqcvgd.1 |
⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ ℕ0 ) |
2 |
|
nn0seqcvgd.2 |
⊢ ( 𝜑 → 𝑁 = ( 𝐹 ‘ 0 ) ) |
3 |
|
nn0seqcvgd.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≠ 0 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝐹 ‘ 𝑘 ) ) ) |
4 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
5 |
|
ffvelrn |
⊢ ( ( 𝐹 : ℕ0 ⟶ ℕ0 ∧ 0 ∈ ℕ0 ) → ( 𝐹 ‘ 0 ) ∈ ℕ0 ) |
6 |
1 4 5
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) ∈ ℕ0 ) |
7 |
2 6
|
eqeltrd |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
8 |
7
|
nn0red |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
9 |
8
|
leidd |
⊢ ( 𝜑 → 𝑁 ≤ 𝑁 ) |
10 |
|
fveq2 |
⊢ ( 𝑚 = 0 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 0 ) ) |
11 |
|
oveq2 |
⊢ ( 𝑚 = 0 → ( 𝑁 − 𝑚 ) = ( 𝑁 − 0 ) ) |
12 |
10 11
|
breq12d |
⊢ ( 𝑚 = 0 → ( ( 𝐹 ‘ 𝑚 ) ≤ ( 𝑁 − 𝑚 ) ↔ ( 𝐹 ‘ 0 ) ≤ ( 𝑁 − 0 ) ) ) |
13 |
12
|
imbi2d |
⊢ ( 𝑚 = 0 → ( ( 𝜑 → ( 𝐹 ‘ 𝑚 ) ≤ ( 𝑁 − 𝑚 ) ) ↔ ( 𝜑 → ( 𝐹 ‘ 0 ) ≤ ( 𝑁 − 0 ) ) ) ) |
14 |
|
fveq2 |
⊢ ( 𝑚 = 𝑘 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑘 ) ) |
15 |
|
oveq2 |
⊢ ( 𝑚 = 𝑘 → ( 𝑁 − 𝑚 ) = ( 𝑁 − 𝑘 ) ) |
16 |
14 15
|
breq12d |
⊢ ( 𝑚 = 𝑘 → ( ( 𝐹 ‘ 𝑚 ) ≤ ( 𝑁 − 𝑚 ) ↔ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) ) ) |
17 |
16
|
imbi2d |
⊢ ( 𝑚 = 𝑘 → ( ( 𝜑 → ( 𝐹 ‘ 𝑚 ) ≤ ( 𝑁 − 𝑚 ) ) ↔ ( 𝜑 → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) ) ) ) |
18 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
19 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( 𝑁 − 𝑚 ) = ( 𝑁 − ( 𝑘 + 1 ) ) ) |
20 |
18 19
|
breq12d |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( ( 𝐹 ‘ 𝑚 ) ≤ ( 𝑁 − 𝑚 ) ↔ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
21 |
20
|
imbi2d |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( ( 𝜑 → ( 𝐹 ‘ 𝑚 ) ≤ ( 𝑁 − 𝑚 ) ) ↔ ( 𝜑 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) ) |
22 |
|
fveq2 |
⊢ ( 𝑚 = 𝑁 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑁 ) ) |
23 |
|
oveq2 |
⊢ ( 𝑚 = 𝑁 → ( 𝑁 − 𝑚 ) = ( 𝑁 − 𝑁 ) ) |
24 |
22 23
|
breq12d |
⊢ ( 𝑚 = 𝑁 → ( ( 𝐹 ‘ 𝑚 ) ≤ ( 𝑁 − 𝑚 ) ↔ ( 𝐹 ‘ 𝑁 ) ≤ ( 𝑁 − 𝑁 ) ) ) |
25 |
24
|
imbi2d |
⊢ ( 𝑚 = 𝑁 → ( ( 𝜑 → ( 𝐹 ‘ 𝑚 ) ≤ ( 𝑁 − 𝑚 ) ) ↔ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ≤ ( 𝑁 − 𝑁 ) ) ) ) |
26 |
2 9
|
eqbrtrrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) ≤ 𝑁 ) |
27 |
8
|
recnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
28 |
27
|
subid1d |
⊢ ( 𝜑 → ( 𝑁 − 0 ) = 𝑁 ) |
29 |
26 28
|
breqtrrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) ≤ ( 𝑁 − 0 ) ) |
30 |
29
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝜑 → ( 𝐹 ‘ 0 ) ≤ ( 𝑁 − 0 ) ) ) |
31 |
|
nn0re |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ ) |
32 |
|
posdif |
⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑘 < 𝑁 ↔ 0 < ( 𝑁 − 𝑘 ) ) ) |
33 |
31 8 32
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 < 𝑁 ↔ 0 < ( 𝑁 − 𝑘 ) ) ) |
34 |
33
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 0 ) → ( 𝑘 < 𝑁 ↔ 0 < ( 𝑁 − 𝑘 ) ) ) |
35 |
|
breq1 |
⊢ ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 0 → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝑁 − 𝑘 ) ↔ 0 < ( 𝑁 − 𝑘 ) ) ) |
36 |
35
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 0 ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝑁 − 𝑘 ) ↔ 0 < ( 𝑁 − 𝑘 ) ) ) |
37 |
|
peano2nn0 |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ0 ) |
38 |
|
ffvelrn |
⊢ ( ( 𝐹 : ℕ0 ⟶ ℕ0 ∧ ( 𝑘 + 1 ) ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℕ0 ) |
39 |
1 37 38
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℕ0 ) |
40 |
39
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℤ ) |
41 |
7
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
42 |
|
nn0z |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ ) |
43 |
|
zsubcl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑁 − 𝑘 ) ∈ ℤ ) |
44 |
41 42 43
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 − 𝑘 ) ∈ ℤ ) |
45 |
|
zltlem1 |
⊢ ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℤ ∧ ( 𝑁 − 𝑘 ) ∈ ℤ ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝑁 − 𝑘 ) ↔ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) |
46 |
40 44 45
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝑁 − 𝑘 ) ↔ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) |
47 |
|
nn0cn |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) |
48 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
49 |
|
subsub4 |
⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 − 𝑘 ) − 1 ) = ( 𝑁 − ( 𝑘 + 1 ) ) ) |
50 |
48 49
|
mp3an3 |
⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 𝑁 − 𝑘 ) − 1 ) = ( 𝑁 − ( 𝑘 + 1 ) ) ) |
51 |
27 47 50
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑁 − 𝑘 ) − 1 ) = ( 𝑁 − ( 𝑘 + 1 ) ) ) |
52 |
51
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( ( 𝑁 − 𝑘 ) − 1 ) ↔ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
53 |
46 52
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝑁 − 𝑘 ) ↔ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
54 |
53
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 0 ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝑁 − 𝑘 ) ↔ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
55 |
34 36 54
|
3bitr2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 0 ) → ( 𝑘 < 𝑁 ↔ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
56 |
55
|
biimpa |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 0 ) ∧ 𝑘 < 𝑁 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) |
57 |
56
|
an32s |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑘 < 𝑁 ) ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 0 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) |
58 |
57
|
a1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑘 < 𝑁 ) ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 0 ) → ( ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
59 |
39
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
60 |
1
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℕ0 ) |
61 |
60
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
62 |
44
|
zred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 − 𝑘 ) ∈ ℝ ) |
63 |
|
ltletr |
⊢ ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝑁 − 𝑘 ) ∈ ℝ ) → ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝐹 ‘ 𝑘 ) ∧ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝑁 − 𝑘 ) ) ) |
64 |
59 61 62 63
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝐹 ‘ 𝑘 ) ∧ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝑁 − 𝑘 ) ) ) |
65 |
64 53
|
sylibd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝐹 ‘ 𝑘 ) ∧ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
66 |
3 65
|
syland |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≠ 0 ∧ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
67 |
66
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑘 < 𝑁 ) → ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≠ 0 ∧ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
68 |
67
|
expdimp |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑘 < 𝑁 ) ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≠ 0 ) → ( ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
69 |
58 68
|
pm2.61dane |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑘 < 𝑁 ) → ( ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
70 |
69
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑘 < 𝑁 ) ) → ( ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
71 |
70
|
expcom |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑘 < 𝑁 ) → ( 𝜑 → ( ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) ) |
72 |
71
|
a2d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑘 < 𝑁 ) → ( ( 𝜑 → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) ) → ( 𝜑 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) ) |
73 |
72
|
3adant1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ∧ 𝑘 < 𝑁 ) → ( ( 𝜑 → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) ) → ( 𝜑 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) ) |
74 |
13 17 21 25 30 73
|
fnn0ind |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 𝑁 ) → ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ≤ ( 𝑁 − 𝑁 ) ) ) |
75 |
7 7 9 74
|
syl3anc |
⊢ ( 𝜑 → ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ≤ ( 𝑁 − 𝑁 ) ) ) |
76 |
75
|
pm2.43i |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ≤ ( 𝑁 − 𝑁 ) ) |
77 |
27
|
subidd |
⊢ ( 𝜑 → ( 𝑁 − 𝑁 ) = 0 ) |
78 |
76 77
|
breqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ≤ 0 ) |
79 |
1 7
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℕ0 ) |
80 |
79
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝐹 ‘ 𝑁 ) ) |
81 |
79
|
nn0red |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) |
82 |
|
0re |
⊢ 0 ∈ ℝ |
83 |
|
letri3 |
⊢ ( ( ( 𝐹 ‘ 𝑁 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑁 ) = 0 ↔ ( ( 𝐹 ‘ 𝑁 ) ≤ 0 ∧ 0 ≤ ( 𝐹 ‘ 𝑁 ) ) ) ) |
84 |
81 82 83
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑁 ) = 0 ↔ ( ( 𝐹 ‘ 𝑁 ) ≤ 0 ∧ 0 ≤ ( 𝐹 ‘ 𝑁 ) ) ) ) |
85 |
78 80 84
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) = 0 ) |