Metamath Proof Explorer


Theorem nn0sinds

Description: Strong (or "total") induction principle over the nonnegative integers. (Contributed by Scott Fenton, 16-May-2014)

Ref Expression
Hypotheses nn0sinds.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
nn0sinds.2 ( 𝑥 = 𝑁 → ( 𝜑𝜒 ) )
nn0sinds.3 ( 𝑥 ∈ ℕ0 → ( ∀ 𝑦 ∈ ( 0 ... ( 𝑥 − 1 ) ) 𝜓𝜑 ) )
Assertion nn0sinds ( 𝑁 ∈ ℕ0𝜒 )

Proof

Step Hyp Ref Expression
1 nn0sinds.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
2 nn0sinds.2 ( 𝑥 = 𝑁 → ( 𝜑𝜒 ) )
3 nn0sinds.3 ( 𝑥 ∈ ℕ0 → ( ∀ 𝑦 ∈ ( 0 ... ( 𝑥 − 1 ) ) 𝜓𝜑 ) )
4 elnn0uz ( 𝑁 ∈ ℕ0𝑁 ∈ ( ℤ ‘ 0 ) )
5 elnn0uz ( 𝑥 ∈ ℕ0𝑥 ∈ ( ℤ ‘ 0 ) )
6 5 3 sylbir ( 𝑥 ∈ ( ℤ ‘ 0 ) → ( ∀ 𝑦 ∈ ( 0 ... ( 𝑥 − 1 ) ) 𝜓𝜑 ) )
7 1 2 6 uzsinds ( 𝑁 ∈ ( ℤ ‘ 0 ) → 𝜒 )
8 4 7 sylbi ( 𝑁 ∈ ℕ0𝜒 )