Step |
Hyp |
Ref |
Expression |
1 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
2 |
1
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → ℕ0 = ( ℤ≥ ‘ 0 ) ) |
3 |
|
peano2nn0 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
4 |
3 1
|
eleqtrdi |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
5 |
|
uzsplit |
⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 0 ) → ( ℤ≥ ‘ 0 ) = ( ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
6 |
4 5
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( ℤ≥ ‘ 0 ) = ( ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
7 |
|
nn0cn |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) |
8 |
|
pncan1 |
⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
9 |
7 8
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
10 |
9
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ0 → ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) = ( 0 ... 𝑁 ) ) |
11 |
10
|
uneq1d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = ( ( 0 ... 𝑁 ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
12 |
2 6 11
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ0 → ℕ0 = ( ( 0 ... 𝑁 ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |