Metamath Proof Explorer


Theorem nn0split

Description: Express the set of nonnegative integers as the disjoint (see nn0disj ) union of the first N + 1 values and the rest. (Contributed by AV, 8-Nov-2019)

Ref Expression
Assertion nn0split ( 𝑁 ∈ ℕ0 → ℕ0 = ( ( 0 ... 𝑁 ) ∪ ( ℤ ‘ ( 𝑁 + 1 ) ) ) )

Proof

Step Hyp Ref Expression
1 nn0uz 0 = ( ℤ ‘ 0 )
2 1 a1i ( 𝑁 ∈ ℕ0 → ℕ0 = ( ℤ ‘ 0 ) )
3 peano2nn0 ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 )
4 3 1 eleqtrdi ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ( ℤ ‘ 0 ) )
5 uzsplit ( ( 𝑁 + 1 ) ∈ ( ℤ ‘ 0 ) → ( ℤ ‘ 0 ) = ( ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ∪ ( ℤ ‘ ( 𝑁 + 1 ) ) ) )
6 4 5 syl ( 𝑁 ∈ ℕ0 → ( ℤ ‘ 0 ) = ( ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ∪ ( ℤ ‘ ( 𝑁 + 1 ) ) ) )
7 nn0cn ( 𝑁 ∈ ℕ0𝑁 ∈ ℂ )
8 pncan1 ( 𝑁 ∈ ℂ → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 )
9 7 8 syl ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 )
10 9 oveq2d ( 𝑁 ∈ ℕ0 → ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) = ( 0 ... 𝑁 ) )
11 10 uneq1d ( 𝑁 ∈ ℕ0 → ( ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ∪ ( ℤ ‘ ( 𝑁 + 1 ) ) ) = ( ( 0 ... 𝑁 ) ∪ ( ℤ ‘ ( 𝑁 + 1 ) ) ) )
12 2 6 11 3eqtrd ( 𝑁 ∈ ℕ0 → ℕ0 = ( ( 0 ... 𝑁 ) ∪ ( ℤ ‘ ( 𝑁 + 1 ) ) ) )