Step |
Hyp |
Ref |
Expression |
1 |
|
cnring |
⊢ ℂfld ∈ Ring |
2 |
|
ringcmn |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ CMnd ) |
3 |
1 2
|
ax-mp |
⊢ ℂfld ∈ CMnd |
4 |
|
nn0subm |
⊢ ℕ0 ∈ ( SubMnd ‘ ℂfld ) |
5 |
|
eqid |
⊢ ( ℂfld ↾s ℕ0 ) = ( ℂfld ↾s ℕ0 ) |
6 |
5
|
submcmn |
⊢ ( ( ℂfld ∈ CMnd ∧ ℕ0 ∈ ( SubMnd ‘ ℂfld ) ) → ( ℂfld ↾s ℕ0 ) ∈ CMnd ) |
7 |
3 4 6
|
mp2an |
⊢ ( ℂfld ↾s ℕ0 ) ∈ CMnd |
8 |
|
nn0ex |
⊢ ℕ0 ∈ V |
9 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
10 |
5 9
|
mgpress |
⊢ ( ( ℂfld ∈ CMnd ∧ ℕ0 ∈ V ) → ( ( mulGrp ‘ ℂfld ) ↾s ℕ0 ) = ( mulGrp ‘ ( ℂfld ↾s ℕ0 ) ) ) |
11 |
3 8 10
|
mp2an |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ℕ0 ) = ( mulGrp ‘ ( ℂfld ↾s ℕ0 ) ) |
12 |
|
nn0sscn |
⊢ ℕ0 ⊆ ℂ |
13 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
14 |
|
nn0mulcl |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑥 · 𝑦 ) ∈ ℕ0 ) |
15 |
14
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℕ0 ∀ 𝑦 ∈ ℕ0 ( 𝑥 · 𝑦 ) ∈ ℕ0 |
16 |
9
|
ringmgp |
⊢ ( ℂfld ∈ Ring → ( mulGrp ‘ ℂfld ) ∈ Mnd ) |
17 |
1 16
|
ax-mp |
⊢ ( mulGrp ‘ ℂfld ) ∈ Mnd |
18 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
19 |
9 18
|
mgpbas |
⊢ ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
20 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
21 |
9 20
|
ringidval |
⊢ 1 = ( 0g ‘ ( mulGrp ‘ ℂfld ) ) |
22 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
23 |
9 22
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ ℂfld ) ) |
24 |
19 21 23
|
issubm |
⊢ ( ( mulGrp ‘ ℂfld ) ∈ Mnd → ( ℕ0 ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ↔ ( ℕ0 ⊆ ℂ ∧ 1 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ∀ 𝑦 ∈ ℕ0 ( 𝑥 · 𝑦 ) ∈ ℕ0 ) ) ) |
25 |
17 24
|
ax-mp |
⊢ ( ℕ0 ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ↔ ( ℕ0 ⊆ ℂ ∧ 1 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ∀ 𝑦 ∈ ℕ0 ( 𝑥 · 𝑦 ) ∈ ℕ0 ) ) |
26 |
12 13 15 25
|
mpbir3an |
⊢ ℕ0 ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) |
27 |
|
eqid |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ℕ0 ) = ( ( mulGrp ‘ ℂfld ) ↾s ℕ0 ) |
28 |
27
|
submmnd |
⊢ ( ℕ0 ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) → ( ( mulGrp ‘ ℂfld ) ↾s ℕ0 ) ∈ Mnd ) |
29 |
26 28
|
ax-mp |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ℕ0 ) ∈ Mnd |
30 |
11 29
|
eqeltrri |
⊢ ( mulGrp ‘ ( ℂfld ↾s ℕ0 ) ) ∈ Mnd |
31 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → 𝑥 ∈ ℕ0 ) |
32 |
31
|
nn0cnd |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → 𝑥 ∈ ℂ ) |
33 |
|
simprl |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → 𝑦 ∈ ℕ0 ) |
34 |
33
|
nn0cnd |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → 𝑦 ∈ ℂ ) |
35 |
|
simprr |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → 𝑧 ∈ ℕ0 ) |
36 |
35
|
nn0cnd |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → 𝑧 ∈ ℂ ) |
37 |
32 34 36
|
adddid |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) |
38 |
32 34 36
|
adddird |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
39 |
37 38
|
jca |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
40 |
39
|
ralrimivva |
⊢ ( 𝑥 ∈ ℕ0 → ∀ 𝑦 ∈ ℕ0 ∀ 𝑧 ∈ ℕ0 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
41 |
|
nn0cn |
⊢ ( 𝑥 ∈ ℕ0 → 𝑥 ∈ ℂ ) |
42 |
41
|
mul02d |
⊢ ( 𝑥 ∈ ℕ0 → ( 0 · 𝑥 ) = 0 ) |
43 |
41
|
mul01d |
⊢ ( 𝑥 ∈ ℕ0 → ( 𝑥 · 0 ) = 0 ) |
44 |
40 42 43
|
jca32 |
⊢ ( 𝑥 ∈ ℕ0 → ( ∀ 𝑦 ∈ ℕ0 ∀ 𝑧 ∈ ℕ0 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) ) |
45 |
44
|
rgen |
⊢ ∀ 𝑥 ∈ ℕ0 ( ∀ 𝑦 ∈ ℕ0 ∀ 𝑧 ∈ ℕ0 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) |
46 |
5 18
|
ressbas2 |
⊢ ( ℕ0 ⊆ ℂ → ℕ0 = ( Base ‘ ( ℂfld ↾s ℕ0 ) ) ) |
47 |
12 46
|
ax-mp |
⊢ ℕ0 = ( Base ‘ ( ℂfld ↾s ℕ0 ) ) |
48 |
|
eqid |
⊢ ( mulGrp ‘ ( ℂfld ↾s ℕ0 ) ) = ( mulGrp ‘ ( ℂfld ↾s ℕ0 ) ) |
49 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
50 |
5 49
|
ressplusg |
⊢ ( ℕ0 ∈ V → + = ( +g ‘ ( ℂfld ↾s ℕ0 ) ) ) |
51 |
8 50
|
ax-mp |
⊢ + = ( +g ‘ ( ℂfld ↾s ℕ0 ) ) |
52 |
5 22
|
ressmulr |
⊢ ( ℕ0 ∈ V → · = ( .r ‘ ( ℂfld ↾s ℕ0 ) ) ) |
53 |
8 52
|
ax-mp |
⊢ · = ( .r ‘ ( ℂfld ↾s ℕ0 ) ) |
54 |
|
ringmnd |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ Mnd ) |
55 |
1 54
|
ax-mp |
⊢ ℂfld ∈ Mnd |
56 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
57 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
58 |
5 18 57
|
ress0g |
⊢ ( ( ℂfld ∈ Mnd ∧ 0 ∈ ℕ0 ∧ ℕ0 ⊆ ℂ ) → 0 = ( 0g ‘ ( ℂfld ↾s ℕ0 ) ) ) |
59 |
55 56 12 58
|
mp3an |
⊢ 0 = ( 0g ‘ ( ℂfld ↾s ℕ0 ) ) |
60 |
47 48 51 53 59
|
issrg |
⊢ ( ( ℂfld ↾s ℕ0 ) ∈ SRing ↔ ( ( ℂfld ↾s ℕ0 ) ∈ CMnd ∧ ( mulGrp ‘ ( ℂfld ↾s ℕ0 ) ) ∈ Mnd ∧ ∀ 𝑥 ∈ ℕ0 ( ∀ 𝑦 ∈ ℕ0 ∀ 𝑧 ∈ ℕ0 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) ) ) |
61 |
7 30 45 60
|
mpbir3an |
⊢ ( ℂfld ↾s ℕ0 ) ∈ SRing |