| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnring |
⊢ ℂfld ∈ Ring |
| 2 |
|
ringcmn |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ CMnd ) |
| 3 |
1 2
|
ax-mp |
⊢ ℂfld ∈ CMnd |
| 4 |
|
nn0subm |
⊢ ℕ0 ∈ ( SubMnd ‘ ℂfld ) |
| 5 |
|
eqid |
⊢ ( ℂfld ↾s ℕ0 ) = ( ℂfld ↾s ℕ0 ) |
| 6 |
5
|
submcmn |
⊢ ( ( ℂfld ∈ CMnd ∧ ℕ0 ∈ ( SubMnd ‘ ℂfld ) ) → ( ℂfld ↾s ℕ0 ) ∈ CMnd ) |
| 7 |
3 4 6
|
mp2an |
⊢ ( ℂfld ↾s ℕ0 ) ∈ CMnd |
| 8 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 9 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
| 10 |
5 9
|
mgpress |
⊢ ( ( ℂfld ∈ CMnd ∧ ℕ0 ∈ V ) → ( ( mulGrp ‘ ℂfld ) ↾s ℕ0 ) = ( mulGrp ‘ ( ℂfld ↾s ℕ0 ) ) ) |
| 11 |
3 8 10
|
mp2an |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ℕ0 ) = ( mulGrp ‘ ( ℂfld ↾s ℕ0 ) ) |
| 12 |
|
nn0sscn |
⊢ ℕ0 ⊆ ℂ |
| 13 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 14 |
|
nn0mulcl |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑥 · 𝑦 ) ∈ ℕ0 ) |
| 15 |
14
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℕ0 ∀ 𝑦 ∈ ℕ0 ( 𝑥 · 𝑦 ) ∈ ℕ0 |
| 16 |
9
|
ringmgp |
⊢ ( ℂfld ∈ Ring → ( mulGrp ‘ ℂfld ) ∈ Mnd ) |
| 17 |
1 16
|
ax-mp |
⊢ ( mulGrp ‘ ℂfld ) ∈ Mnd |
| 18 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 19 |
9 18
|
mgpbas |
⊢ ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
| 20 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
| 21 |
9 20
|
ringidval |
⊢ 1 = ( 0g ‘ ( mulGrp ‘ ℂfld ) ) |
| 22 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
| 23 |
9 22
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ ℂfld ) ) |
| 24 |
19 21 23
|
issubm |
⊢ ( ( mulGrp ‘ ℂfld ) ∈ Mnd → ( ℕ0 ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ↔ ( ℕ0 ⊆ ℂ ∧ 1 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ∀ 𝑦 ∈ ℕ0 ( 𝑥 · 𝑦 ) ∈ ℕ0 ) ) ) |
| 25 |
17 24
|
ax-mp |
⊢ ( ℕ0 ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ↔ ( ℕ0 ⊆ ℂ ∧ 1 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ∀ 𝑦 ∈ ℕ0 ( 𝑥 · 𝑦 ) ∈ ℕ0 ) ) |
| 26 |
12 13 15 25
|
mpbir3an |
⊢ ℕ0 ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) |
| 27 |
|
eqid |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ℕ0 ) = ( ( mulGrp ‘ ℂfld ) ↾s ℕ0 ) |
| 28 |
27
|
submmnd |
⊢ ( ℕ0 ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) → ( ( mulGrp ‘ ℂfld ) ↾s ℕ0 ) ∈ Mnd ) |
| 29 |
26 28
|
ax-mp |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ℕ0 ) ∈ Mnd |
| 30 |
11 29
|
eqeltrri |
⊢ ( mulGrp ‘ ( ℂfld ↾s ℕ0 ) ) ∈ Mnd |
| 31 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → 𝑥 ∈ ℕ0 ) |
| 32 |
31
|
nn0cnd |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → 𝑥 ∈ ℂ ) |
| 33 |
|
simprl |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → 𝑦 ∈ ℕ0 ) |
| 34 |
33
|
nn0cnd |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → 𝑦 ∈ ℂ ) |
| 35 |
|
simprr |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → 𝑧 ∈ ℕ0 ) |
| 36 |
35
|
nn0cnd |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → 𝑧 ∈ ℂ ) |
| 37 |
32 34 36
|
adddid |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) |
| 38 |
32 34 36
|
adddird |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
| 39 |
37 38
|
jca |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
| 40 |
39
|
ralrimivva |
⊢ ( 𝑥 ∈ ℕ0 → ∀ 𝑦 ∈ ℕ0 ∀ 𝑧 ∈ ℕ0 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
| 41 |
|
nn0cn |
⊢ ( 𝑥 ∈ ℕ0 → 𝑥 ∈ ℂ ) |
| 42 |
41
|
mul02d |
⊢ ( 𝑥 ∈ ℕ0 → ( 0 · 𝑥 ) = 0 ) |
| 43 |
41
|
mul01d |
⊢ ( 𝑥 ∈ ℕ0 → ( 𝑥 · 0 ) = 0 ) |
| 44 |
40 42 43
|
jca32 |
⊢ ( 𝑥 ∈ ℕ0 → ( ∀ 𝑦 ∈ ℕ0 ∀ 𝑧 ∈ ℕ0 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) ) |
| 45 |
44
|
rgen |
⊢ ∀ 𝑥 ∈ ℕ0 ( ∀ 𝑦 ∈ ℕ0 ∀ 𝑧 ∈ ℕ0 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) |
| 46 |
5 18
|
ressbas2 |
⊢ ( ℕ0 ⊆ ℂ → ℕ0 = ( Base ‘ ( ℂfld ↾s ℕ0 ) ) ) |
| 47 |
12 46
|
ax-mp |
⊢ ℕ0 = ( Base ‘ ( ℂfld ↾s ℕ0 ) ) |
| 48 |
|
eqid |
⊢ ( mulGrp ‘ ( ℂfld ↾s ℕ0 ) ) = ( mulGrp ‘ ( ℂfld ↾s ℕ0 ) ) |
| 49 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
| 50 |
5 49
|
ressplusg |
⊢ ( ℕ0 ∈ V → + = ( +g ‘ ( ℂfld ↾s ℕ0 ) ) ) |
| 51 |
8 50
|
ax-mp |
⊢ + = ( +g ‘ ( ℂfld ↾s ℕ0 ) ) |
| 52 |
5 22
|
ressmulr |
⊢ ( ℕ0 ∈ V → · = ( .r ‘ ( ℂfld ↾s ℕ0 ) ) ) |
| 53 |
8 52
|
ax-mp |
⊢ · = ( .r ‘ ( ℂfld ↾s ℕ0 ) ) |
| 54 |
|
ringmnd |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ Mnd ) |
| 55 |
1 54
|
ax-mp |
⊢ ℂfld ∈ Mnd |
| 56 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 57 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
| 58 |
5 18 57
|
ress0g |
⊢ ( ( ℂfld ∈ Mnd ∧ 0 ∈ ℕ0 ∧ ℕ0 ⊆ ℂ ) → 0 = ( 0g ‘ ( ℂfld ↾s ℕ0 ) ) ) |
| 59 |
55 56 12 58
|
mp3an |
⊢ 0 = ( 0g ‘ ( ℂfld ↾s ℕ0 ) ) |
| 60 |
47 48 51 53 59
|
issrg |
⊢ ( ( ℂfld ↾s ℕ0 ) ∈ SRing ↔ ( ( ℂfld ↾s ℕ0 ) ∈ CMnd ∧ ( mulGrp ‘ ( ℂfld ↾s ℕ0 ) ) ∈ Mnd ∧ ∀ 𝑥 ∈ ℕ0 ( ∀ 𝑦 ∈ ℕ0 ∀ 𝑧 ∈ ℕ0 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) ) ) |
| 61 |
7 30 45 60
|
mpbir3an |
⊢ ( ℂfld ↾s ℕ0 ) ∈ SRing |