Metamath Proof Explorer


Theorem nn0ssre

Description: Nonnegative integers are a subset of the reals. (Contributed by Raph Levien, 10-Dec-2002)

Ref Expression
Assertion nn0ssre 0 ⊆ ℝ

Proof

Step Hyp Ref Expression
1 df-n0 0 = ( ℕ ∪ { 0 } )
2 nnssre ℕ ⊆ ℝ
3 0re 0 ∈ ℝ
4 snssi ( 0 ∈ ℝ → { 0 } ⊆ ℝ )
5 3 4 ax-mp { 0 } ⊆ ℝ
6 2 5 unssi ( ℕ ∪ { 0 } ) ⊆ ℝ
7 1 6 eqsstri 0 ⊆ ℝ