Step |
Hyp |
Ref |
Expression |
1 |
|
nn0re |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ ) |
2 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
3 |
|
leloe |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀 ≤ 𝑁 ↔ ( 𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ) ) ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ≤ 𝑁 ↔ ( 𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ) ) ) |
5 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
6 |
|
elnn0 |
⊢ ( 𝑀 ∈ ℕ0 ↔ ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) ) |
7 |
|
nnsub |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 < 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ ) ) |
8 |
7
|
ex |
⊢ ( 𝑀 ∈ ℕ → ( 𝑁 ∈ ℕ → ( 𝑀 < 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ ) ) ) |
9 |
|
nngt0 |
⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) |
10 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
11 |
10
|
subid1d |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 0 ) = 𝑁 ) |
12 |
|
id |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ ) |
13 |
11 12
|
eqeltrd |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 0 ) ∈ ℕ ) |
14 |
9 13
|
2thd |
⊢ ( 𝑁 ∈ ℕ → ( 0 < 𝑁 ↔ ( 𝑁 − 0 ) ∈ ℕ ) ) |
15 |
|
breq1 |
⊢ ( 𝑀 = 0 → ( 𝑀 < 𝑁 ↔ 0 < 𝑁 ) ) |
16 |
|
oveq2 |
⊢ ( 𝑀 = 0 → ( 𝑁 − 𝑀 ) = ( 𝑁 − 0 ) ) |
17 |
16
|
eleq1d |
⊢ ( 𝑀 = 0 → ( ( 𝑁 − 𝑀 ) ∈ ℕ ↔ ( 𝑁 − 0 ) ∈ ℕ ) ) |
18 |
15 17
|
bibi12d |
⊢ ( 𝑀 = 0 → ( ( 𝑀 < 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ ) ↔ ( 0 < 𝑁 ↔ ( 𝑁 − 0 ) ∈ ℕ ) ) ) |
19 |
14 18
|
syl5ibr |
⊢ ( 𝑀 = 0 → ( 𝑁 ∈ ℕ → ( 𝑀 < 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ ) ) ) |
20 |
8 19
|
jaoi |
⊢ ( ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) → ( 𝑁 ∈ ℕ → ( 𝑀 < 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ ) ) ) |
21 |
6 20
|
sylbi |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑁 ∈ ℕ → ( 𝑀 < 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ ) ) ) |
22 |
|
nn0nlt0 |
⊢ ( 𝑀 ∈ ℕ0 → ¬ 𝑀 < 0 ) |
23 |
22
|
pm2.21d |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 < 0 → ( 0 − 𝑀 ) ∈ ℕ ) ) |
24 |
|
nngt0 |
⊢ ( ( 0 − 𝑀 ) ∈ ℕ → 0 < ( 0 − 𝑀 ) ) |
25 |
|
0re |
⊢ 0 ∈ ℝ |
26 |
|
posdif |
⊢ ( ( 𝑀 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝑀 < 0 ↔ 0 < ( 0 − 𝑀 ) ) ) |
27 |
1 25 26
|
sylancl |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 < 0 ↔ 0 < ( 0 − 𝑀 ) ) ) |
28 |
24 27
|
syl5ibr |
⊢ ( 𝑀 ∈ ℕ0 → ( ( 0 − 𝑀 ) ∈ ℕ → 𝑀 < 0 ) ) |
29 |
23 28
|
impbid |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 < 0 ↔ ( 0 − 𝑀 ) ∈ ℕ ) ) |
30 |
|
breq2 |
⊢ ( 𝑁 = 0 → ( 𝑀 < 𝑁 ↔ 𝑀 < 0 ) ) |
31 |
|
oveq1 |
⊢ ( 𝑁 = 0 → ( 𝑁 − 𝑀 ) = ( 0 − 𝑀 ) ) |
32 |
31
|
eleq1d |
⊢ ( 𝑁 = 0 → ( ( 𝑁 − 𝑀 ) ∈ ℕ ↔ ( 0 − 𝑀 ) ∈ ℕ ) ) |
33 |
30 32
|
bibi12d |
⊢ ( 𝑁 = 0 → ( ( 𝑀 < 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ ) ↔ ( 𝑀 < 0 ↔ ( 0 − 𝑀 ) ∈ ℕ ) ) ) |
34 |
29 33
|
syl5ibrcom |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑁 = 0 → ( 𝑀 < 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ ) ) ) |
35 |
21 34
|
jaod |
⊢ ( 𝑀 ∈ ℕ0 → ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( 𝑀 < 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ ) ) ) |
36 |
5 35
|
syl5bi |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑁 ∈ ℕ0 → ( 𝑀 < 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ ) ) ) |
37 |
36
|
imp |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 < 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ ) ) |
38 |
|
nn0cn |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) |
39 |
|
nn0cn |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℂ ) |
40 |
|
subeq0 |
⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( ( 𝑁 − 𝑀 ) = 0 ↔ 𝑁 = 𝑀 ) ) |
41 |
38 39 40
|
syl2anr |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 − 𝑀 ) = 0 ↔ 𝑁 = 𝑀 ) ) |
42 |
|
eqcom |
⊢ ( 𝑁 = 𝑀 ↔ 𝑀 = 𝑁 ) |
43 |
41 42
|
bitr2di |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 = 𝑁 ↔ ( 𝑁 − 𝑀 ) = 0 ) ) |
44 |
37 43
|
orbi12d |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ) ↔ ( ( 𝑁 − 𝑀 ) ∈ ℕ ∨ ( 𝑁 − 𝑀 ) = 0 ) ) ) |
45 |
4 44
|
bitrd |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ≤ 𝑁 ↔ ( ( 𝑁 − 𝑀 ) ∈ ℕ ∨ ( 𝑁 − 𝑀 ) = 0 ) ) ) |
46 |
|
elnn0 |
⊢ ( ( 𝑁 − 𝑀 ) ∈ ℕ0 ↔ ( ( 𝑁 − 𝑀 ) ∈ ℕ ∨ ( 𝑁 − 𝑀 ) = 0 ) ) |
47 |
45 46
|
bitr4di |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ≤ 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ0 ) ) |