Description: A natural number is either 0 or a successor. (Contributed by NM, 27-May-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | nn0suc | ⊢ ( 𝐴 ∈ ω → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ ω 𝐴 = suc 𝑥 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne | ⊢ ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ ) | |
2 | nnsuc | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ ω 𝐴 = suc 𝑥 ) | |
3 | 1 2 | sylan2br | ⊢ ( ( 𝐴 ∈ ω ∧ ¬ 𝐴 = ∅ ) → ∃ 𝑥 ∈ ω 𝐴 = suc 𝑥 ) |
4 | 3 | ex | ⊢ ( 𝐴 ∈ ω → ( ¬ 𝐴 = ∅ → ∃ 𝑥 ∈ ω 𝐴 = suc 𝑥 ) ) |
5 | 4 | orrd | ⊢ ( 𝐴 ∈ ω → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ ω 𝐴 = suc 𝑥 ) ) |