Metamath Proof Explorer


Theorem nn0suc

Description: A natural number is either 0 or a successor. (Contributed by NM, 27-May-1998)

Ref Expression
Assertion nn0suc ( 𝐴 ∈ ω → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ ω 𝐴 = suc 𝑥 ) )

Proof

Step Hyp Ref Expression
1 df-ne ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ )
2 nnsuc ( ( 𝐴 ∈ ω ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ ω 𝐴 = suc 𝑥 )
3 1 2 sylan2br ( ( 𝐴 ∈ ω ∧ ¬ 𝐴 = ∅ ) → ∃ 𝑥 ∈ ω 𝐴 = suc 𝑥 )
4 3 ex ( 𝐴 ∈ ω → ( ¬ 𝐴 = ∅ → ∃ 𝑥 ∈ ω 𝐴 = suc 𝑥 ) )
5 4 orrd ( 𝐴 ∈ ω → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ ω 𝐴 = suc 𝑥 ) )