Metamath Proof Explorer


Theorem nn0z

Description: A nonnegative integer is an integer. (Contributed by NM, 9-May-2004)

Ref Expression
Assertion nn0z ( 𝑁 ∈ ℕ0𝑁 ∈ ℤ )

Proof

Step Hyp Ref Expression
1 nn0ssz 0 ⊆ ℤ
2 1 sseli ( 𝑁 ∈ ℕ0𝑁 ∈ ℤ )