Step |
Hyp |
Ref |
Expression |
1 |
|
orc |
⊢ ( 𝑥 = 1 → ( 𝑥 = 1 ∨ ( 𝑥 − 1 ) ∈ ℕ ) ) |
2 |
|
1cnd |
⊢ ( 𝑥 = 1 → 1 ∈ ℂ ) |
3 |
1 2
|
2thd |
⊢ ( 𝑥 = 1 → ( ( 𝑥 = 1 ∨ ( 𝑥 − 1 ) ∈ ℕ ) ↔ 1 ∈ ℂ ) ) |
4 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 1 ↔ 𝑦 = 1 ) ) |
5 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 − 1 ) = ( 𝑦 − 1 ) ) |
6 |
5
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 − 1 ) ∈ ℕ ↔ ( 𝑦 − 1 ) ∈ ℕ ) ) |
7 |
4 6
|
orbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 = 1 ∨ ( 𝑥 − 1 ) ∈ ℕ ) ↔ ( 𝑦 = 1 ∨ ( 𝑦 − 1 ) ∈ ℕ ) ) ) |
8 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 = 1 ↔ ( 𝑦 + 1 ) = 1 ) ) |
9 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 − 1 ) = ( ( 𝑦 + 1 ) − 1 ) ) |
10 |
9
|
eleq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 − 1 ) ∈ ℕ ↔ ( ( 𝑦 + 1 ) − 1 ) ∈ ℕ ) ) |
11 |
8 10
|
orbi12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 = 1 ∨ ( 𝑥 − 1 ) ∈ ℕ ) ↔ ( ( 𝑦 + 1 ) = 1 ∨ ( ( 𝑦 + 1 ) − 1 ) ∈ ℕ ) ) ) |
12 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 1 ↔ 𝐴 = 1 ) ) |
13 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 − 1 ) = ( 𝐴 − 1 ) ) |
14 |
13
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 − 1 ) ∈ ℕ ↔ ( 𝐴 − 1 ) ∈ ℕ ) ) |
15 |
12 14
|
orbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 = 1 ∨ ( 𝑥 − 1 ) ∈ ℕ ) ↔ ( 𝐴 = 1 ∨ ( 𝐴 − 1 ) ∈ ℕ ) ) ) |
16 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
17 |
|
nncn |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) |
18 |
|
pncan |
⊢ ( ( 𝑦 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑦 + 1 ) − 1 ) = 𝑦 ) |
19 |
17 16 18
|
sylancl |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝑦 + 1 ) − 1 ) = 𝑦 ) |
20 |
|
id |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℕ ) |
21 |
19 20
|
eqeltrd |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝑦 + 1 ) − 1 ) ∈ ℕ ) |
22 |
21
|
olcd |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝑦 + 1 ) = 1 ∨ ( ( 𝑦 + 1 ) − 1 ) ∈ ℕ ) ) |
23 |
22
|
a1d |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝑦 = 1 ∨ ( 𝑦 − 1 ) ∈ ℕ ) → ( ( 𝑦 + 1 ) = 1 ∨ ( ( 𝑦 + 1 ) − 1 ) ∈ ℕ ) ) ) |
24 |
3 7 11 15 16 23
|
nnind |
⊢ ( 𝐴 ∈ ℕ → ( 𝐴 = 1 ∨ ( 𝐴 − 1 ) ∈ ℕ ) ) |