Step |
Hyp |
Ref |
Expression |
1 |
|
nn1suc.1 |
⊢ ( 𝑥 = 1 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
nn1suc.3 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝜑 ↔ 𝜒 ) ) |
3 |
|
nn1suc.4 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜃 ) ) |
4 |
|
nn1suc.5 |
⊢ 𝜓 |
5 |
|
nn1suc.6 |
⊢ ( 𝑦 ∈ ℕ → 𝜒 ) |
6 |
|
1ex |
⊢ 1 ∈ V |
7 |
6 1
|
sbcie |
⊢ ( [ 1 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
8 |
4 7
|
mpbir |
⊢ [ 1 / 𝑥 ] 𝜑 |
9 |
|
1nn |
⊢ 1 ∈ ℕ |
10 |
|
eleq1 |
⊢ ( 𝐴 = 1 → ( 𝐴 ∈ ℕ ↔ 1 ∈ ℕ ) ) |
11 |
9 10
|
mpbiri |
⊢ ( 𝐴 = 1 → 𝐴 ∈ ℕ ) |
12 |
3
|
sbcieg |
⊢ ( 𝐴 ∈ ℕ → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜃 ) ) |
13 |
11 12
|
syl |
⊢ ( 𝐴 = 1 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜃 ) ) |
14 |
|
dfsbcq |
⊢ ( 𝐴 = 1 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 1 / 𝑥 ] 𝜑 ) ) |
15 |
13 14
|
bitr3d |
⊢ ( 𝐴 = 1 → ( 𝜃 ↔ [ 1 / 𝑥 ] 𝜑 ) ) |
16 |
8 15
|
mpbiri |
⊢ ( 𝐴 = 1 → 𝜃 ) |
17 |
16
|
a1i |
⊢ ( 𝐴 ∈ ℕ → ( 𝐴 = 1 → 𝜃 ) ) |
18 |
|
ovex |
⊢ ( 𝑦 + 1 ) ∈ V |
19 |
18 2
|
sbcie |
⊢ ( [ ( 𝑦 + 1 ) / 𝑥 ] 𝜑 ↔ 𝜒 ) |
20 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝐴 − 1 ) → ( 𝑦 + 1 ) = ( ( 𝐴 − 1 ) + 1 ) ) |
21 |
20
|
sbceq1d |
⊢ ( 𝑦 = ( 𝐴 − 1 ) → ( [ ( 𝑦 + 1 ) / 𝑥 ] 𝜑 ↔ [ ( ( 𝐴 − 1 ) + 1 ) / 𝑥 ] 𝜑 ) ) |
22 |
19 21
|
bitr3id |
⊢ ( 𝑦 = ( 𝐴 − 1 ) → ( 𝜒 ↔ [ ( ( 𝐴 − 1 ) + 1 ) / 𝑥 ] 𝜑 ) ) |
23 |
22 5
|
vtoclga |
⊢ ( ( 𝐴 − 1 ) ∈ ℕ → [ ( ( 𝐴 − 1 ) + 1 ) / 𝑥 ] 𝜑 ) |
24 |
|
nncn |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℂ ) |
25 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
26 |
|
npcan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐴 − 1 ) + 1 ) = 𝐴 ) |
27 |
24 25 26
|
sylancl |
⊢ ( 𝐴 ∈ ℕ → ( ( 𝐴 − 1 ) + 1 ) = 𝐴 ) |
28 |
27
|
sbceq1d |
⊢ ( 𝐴 ∈ ℕ → ( [ ( ( 𝐴 − 1 ) + 1 ) / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
29 |
28 12
|
bitrd |
⊢ ( 𝐴 ∈ ℕ → ( [ ( ( 𝐴 − 1 ) + 1 ) / 𝑥 ] 𝜑 ↔ 𝜃 ) ) |
30 |
23 29
|
syl5ib |
⊢ ( 𝐴 ∈ ℕ → ( ( 𝐴 − 1 ) ∈ ℕ → 𝜃 ) ) |
31 |
|
nn1m1nn |
⊢ ( 𝐴 ∈ ℕ → ( 𝐴 = 1 ∨ ( 𝐴 − 1 ) ∈ ℕ ) ) |
32 |
17 30 31
|
mpjaod |
⊢ ( 𝐴 ∈ ℕ → 𝜃 ) |