| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnre | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℝ ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  𝐴  ∈  ℝ ) | 
						
							| 3 |  | nnre | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℝ ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  𝐵  ∈  ℝ ) | 
						
							| 5 |  | leid | ⊢ ( 𝐵  ∈  ℝ  →  𝐵  ≤  𝐵 ) | 
						
							| 6 | 5 | anim1ci | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐴  ≤  𝐵 )  →  ( 𝐴  ≤  𝐵  ∧  𝐵  ≤  𝐵 ) ) | 
						
							| 7 | 3 6 | sylan | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐴  ≤  𝐵 )  →  ( 𝐴  ≤  𝐵  ∧  𝐵  ≤  𝐵 ) ) | 
						
							| 8 |  | breq2 | ⊢ ( 𝑥  =  𝐵  →  ( 𝐴  ≤  𝑥  ↔  𝐴  ≤  𝐵 ) ) | 
						
							| 9 |  | breq2 | ⊢ ( 𝑥  =  𝐵  →  ( 𝐵  ≤  𝑥  ↔  𝐵  ≤  𝐵 ) ) | 
						
							| 10 | 8 9 | anbi12d | ⊢ ( 𝑥  =  𝐵  →  ( ( 𝐴  ≤  𝑥  ∧  𝐵  ≤  𝑥 )  ↔  ( 𝐴  ≤  𝐵  ∧  𝐵  ≤  𝐵 ) ) ) | 
						
							| 11 | 10 | rspcev | ⊢ ( ( 𝐵  ∈  ℕ  ∧  ( 𝐴  ≤  𝐵  ∧  𝐵  ≤  𝐵 ) )  →  ∃ 𝑥  ∈  ℕ ( 𝐴  ≤  𝑥  ∧  𝐵  ≤  𝑥 ) ) | 
						
							| 12 | 7 11 | syldan | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐴  ≤  𝐵 )  →  ∃ 𝑥  ∈  ℕ ( 𝐴  ≤  𝑥  ∧  𝐵  ≤  𝑥 ) ) | 
						
							| 13 | 12 | adantll | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  ∧  𝐴  ≤  𝐵 )  →  ∃ 𝑥  ∈  ℕ ( 𝐴  ≤  𝑥  ∧  𝐵  ≤  𝑥 ) ) | 
						
							| 14 |  | leid | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ≤  𝐴 ) | 
						
							| 15 | 14 | anim1i | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ≤  𝐴 )  →  ( 𝐴  ≤  𝐴  ∧  𝐵  ≤  𝐴 ) ) | 
						
							| 16 | 1 15 | sylan | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ≤  𝐴 )  →  ( 𝐴  ≤  𝐴  ∧  𝐵  ≤  𝐴 ) ) | 
						
							| 17 |  | breq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝐴  ≤  𝑥  ↔  𝐴  ≤  𝐴 ) ) | 
						
							| 18 |  | breq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝐵  ≤  𝑥  ↔  𝐵  ≤  𝐴 ) ) | 
						
							| 19 | 17 18 | anbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝐴  ≤  𝑥  ∧  𝐵  ≤  𝑥 )  ↔  ( 𝐴  ≤  𝐴  ∧  𝐵  ≤  𝐴 ) ) ) | 
						
							| 20 | 19 | rspcev | ⊢ ( ( 𝐴  ∈  ℕ  ∧  ( 𝐴  ≤  𝐴  ∧  𝐵  ≤  𝐴 ) )  →  ∃ 𝑥  ∈  ℕ ( 𝐴  ≤  𝑥  ∧  𝐵  ≤  𝑥 ) ) | 
						
							| 21 | 16 20 | syldan | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ≤  𝐴 )  →  ∃ 𝑥  ∈  ℕ ( 𝐴  ≤  𝑥  ∧  𝐵  ≤  𝑥 ) ) | 
						
							| 22 | 21 | adantlr | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  ∧  𝐵  ≤  𝐴 )  →  ∃ 𝑥  ∈  ℕ ( 𝐴  ≤  𝑥  ∧  𝐵  ≤  𝑥 ) ) | 
						
							| 23 | 2 4 13 22 | lecasei | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ∃ 𝑥  ∈  ℕ ( 𝐴  ≤  𝑥  ∧  𝐵  ≤  𝑥 ) ) |