Metamath Proof Explorer


Theorem nn2ge

Description: There exists a positive integer greater than or equal to any two others. (Contributed by NM, 18-Aug-1999)

Ref Expression
Assertion nn2ge ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ∃ 𝑥 ∈ ℕ ( 𝐴𝑥𝐵𝑥 ) )

Proof

Step Hyp Ref Expression
1 nnre ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ )
2 1 adantr ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐴 ∈ ℝ )
3 nnre ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ )
4 3 adantl ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℝ )
5 leid ( 𝐵 ∈ ℝ → 𝐵𝐵 )
6 5 anim1ci ( ( 𝐵 ∈ ℝ ∧ 𝐴𝐵 ) → ( 𝐴𝐵𝐵𝐵 ) )
7 3 6 sylan ( ( 𝐵 ∈ ℕ ∧ 𝐴𝐵 ) → ( 𝐴𝐵𝐵𝐵 ) )
8 breq2 ( 𝑥 = 𝐵 → ( 𝐴𝑥𝐴𝐵 ) )
9 breq2 ( 𝑥 = 𝐵 → ( 𝐵𝑥𝐵𝐵 ) )
10 8 9 anbi12d ( 𝑥 = 𝐵 → ( ( 𝐴𝑥𝐵𝑥 ) ↔ ( 𝐴𝐵𝐵𝐵 ) ) )
11 10 rspcev ( ( 𝐵 ∈ ℕ ∧ ( 𝐴𝐵𝐵𝐵 ) ) → ∃ 𝑥 ∈ ℕ ( 𝐴𝑥𝐵𝑥 ) )
12 7 11 syldan ( ( 𝐵 ∈ ℕ ∧ 𝐴𝐵 ) → ∃ 𝑥 ∈ ℕ ( 𝐴𝑥𝐵𝑥 ) )
13 12 adantll ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝐴𝐵 ) → ∃ 𝑥 ∈ ℕ ( 𝐴𝑥𝐵𝑥 ) )
14 leid ( 𝐴 ∈ ℝ → 𝐴𝐴 )
15 14 anim1i ( ( 𝐴 ∈ ℝ ∧ 𝐵𝐴 ) → ( 𝐴𝐴𝐵𝐴 ) )
16 1 15 sylan ( ( 𝐴 ∈ ℕ ∧ 𝐵𝐴 ) → ( 𝐴𝐴𝐵𝐴 ) )
17 breq2 ( 𝑥 = 𝐴 → ( 𝐴𝑥𝐴𝐴 ) )
18 breq2 ( 𝑥 = 𝐴 → ( 𝐵𝑥𝐵𝐴 ) )
19 17 18 anbi12d ( 𝑥 = 𝐴 → ( ( 𝐴𝑥𝐵𝑥 ) ↔ ( 𝐴𝐴𝐵𝐴 ) ) )
20 19 rspcev ( ( 𝐴 ∈ ℕ ∧ ( 𝐴𝐴𝐵𝐴 ) ) → ∃ 𝑥 ∈ ℕ ( 𝐴𝑥𝐵𝑥 ) )
21 16 20 syldan ( ( 𝐴 ∈ ℕ ∧ 𝐵𝐴 ) → ∃ 𝑥 ∈ ℕ ( 𝐴𝑥𝐵𝑥 ) )
22 21 adantlr ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝐵𝐴 ) → ∃ 𝑥 ∈ ℕ ( 𝐴𝑥𝐵𝑥 ) )
23 2 4 13 22 lecasei ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ∃ 𝑥 ∈ ℕ ( 𝐴𝑥𝐵𝑥 ) )