Step |
Hyp |
Ref |
Expression |
1 |
|
nnre |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) |
2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
3 |
|
nnre |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ ) |
4 |
3
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℝ ) |
5 |
|
leid |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ≤ 𝐵 ) |
6 |
5
|
anim1ci |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵 ) ) |
7 |
3 6
|
sylan |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵 ) ) |
8 |
|
breq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 ≤ 𝑥 ↔ 𝐴 ≤ 𝐵 ) ) |
9 |
|
breq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐵 ≤ 𝑥 ↔ 𝐵 ≤ 𝐵 ) ) |
10 |
8 9
|
anbi12d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥 ) ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵 ) ) ) |
11 |
10
|
rspcev |
⊢ ( ( 𝐵 ∈ ℕ ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵 ) ) → ∃ 𝑥 ∈ ℕ ( 𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥 ) ) |
12 |
7 11
|
syldan |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵 ) → ∃ 𝑥 ∈ ℕ ( 𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥 ) ) |
13 |
12
|
adantll |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝐴 ≤ 𝐵 ) → ∃ 𝑥 ∈ ℕ ( 𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥 ) ) |
14 |
|
leid |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ≤ 𝐴 ) |
15 |
14
|
anim1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) → ( 𝐴 ≤ 𝐴 ∧ 𝐵 ≤ 𝐴 ) ) |
16 |
1 15
|
sylan |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ≤ 𝐴 ) → ( 𝐴 ≤ 𝐴 ∧ 𝐵 ≤ 𝐴 ) ) |
17 |
|
breq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐴 ≤ 𝑥 ↔ 𝐴 ≤ 𝐴 ) ) |
18 |
|
breq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐵 ≤ 𝑥 ↔ 𝐵 ≤ 𝐴 ) ) |
19 |
17 18
|
anbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥 ) ↔ ( 𝐴 ≤ 𝐴 ∧ 𝐵 ≤ 𝐴 ) ) ) |
20 |
19
|
rspcev |
⊢ ( ( 𝐴 ∈ ℕ ∧ ( 𝐴 ≤ 𝐴 ∧ 𝐵 ≤ 𝐴 ) ) → ∃ 𝑥 ∈ ℕ ( 𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥 ) ) |
21 |
16 20
|
syldan |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ≤ 𝐴 ) → ∃ 𝑥 ∈ ℕ ( 𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥 ) ) |
22 |
21
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝐵 ≤ 𝐴 ) → ∃ 𝑥 ∈ ℕ ( 𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥 ) ) |
23 |
2 4 13 22
|
lecasei |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ∃ 𝑥 ∈ ℕ ( 𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥 ) ) |