Description: Multiply an element of _om by 2o . (Contributed by Scott Fenton, 16-Apr-2012) (Revised by Mario Carneiro, 17-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | nn2m | ⊢ ( 𝐴 ∈ ω → ( 2o ·o 𝐴 ) = ( 𝐴 +o 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2onn | ⊢ 2o ∈ ω | |
2 | nnmcom | ⊢ ( ( 2o ∈ ω ∧ 𝐴 ∈ ω ) → ( 2o ·o 𝐴 ) = ( 𝐴 ·o 2o ) ) | |
3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ ω → ( 2o ·o 𝐴 ) = ( 𝐴 ·o 2o ) ) |
4 | nnm2 | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ·o 2o ) = ( 𝐴 +o 𝐴 ) ) | |
5 | 3 4 | eqtrd | ⊢ ( 𝐴 ∈ ω → ( 2o ·o 𝐴 ) = ( 𝐴 +o 𝐴 ) ) |