Metamath Proof Explorer


Theorem nn2m

Description: Multiply an element of _om by 2o . (Contributed by Scott Fenton, 16-Apr-2012) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion nn2m ( 𝐴 ∈ ω → ( 2o ·o 𝐴 ) = ( 𝐴 +o 𝐴 ) )

Proof

Step Hyp Ref Expression
1 2onn 2o ∈ ω
2 nnmcom ( ( 2o ∈ ω ∧ 𝐴 ∈ ω ) → ( 2o ·o 𝐴 ) = ( 𝐴 ·o 2o ) )
3 1 2 mpan ( 𝐴 ∈ ω → ( 2o ·o 𝐴 ) = ( 𝐴 ·o 2o ) )
4 nnm2 ( 𝐴 ∈ ω → ( 𝐴 ·o 2o ) = ( 𝐴 +o 𝐴 ) )
5 3 4 eqtrd ( 𝐴 ∈ ω → ( 2o ·o 𝐴 ) = ( 𝐴 +o 𝐴 ) )