Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( ∅ +o 𝑥 ) = ( ∅ +o ∅ ) ) |
2 |
|
id |
⊢ ( 𝑥 = ∅ → 𝑥 = ∅ ) |
3 |
1 2
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( ∅ +o 𝑥 ) = 𝑥 ↔ ( ∅ +o ∅ ) = ∅ ) ) |
4 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( ∅ +o 𝑥 ) = ( ∅ +o 𝑦 ) ) |
5 |
|
id |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
6 |
4 5
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ∅ +o 𝑥 ) = 𝑥 ↔ ( ∅ +o 𝑦 ) = 𝑦 ) ) |
7 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( ∅ +o 𝑥 ) = ( ∅ +o suc 𝑦 ) ) |
8 |
|
id |
⊢ ( 𝑥 = suc 𝑦 → 𝑥 = suc 𝑦 ) |
9 |
7 8
|
eqeq12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( ∅ +o 𝑥 ) = 𝑥 ↔ ( ∅ +o suc 𝑦 ) = suc 𝑦 ) ) |
10 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( ∅ +o 𝑥 ) = ( ∅ +o 𝐴 ) ) |
11 |
|
id |
⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) |
12 |
10 11
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( ∅ +o 𝑥 ) = 𝑥 ↔ ( ∅ +o 𝐴 ) = 𝐴 ) ) |
13 |
|
0elon |
⊢ ∅ ∈ On |
14 |
|
oa0 |
⊢ ( ∅ ∈ On → ( ∅ +o ∅ ) = ∅ ) |
15 |
13 14
|
ax-mp |
⊢ ( ∅ +o ∅ ) = ∅ |
16 |
|
peano1 |
⊢ ∅ ∈ ω |
17 |
|
nnasuc |
⊢ ( ( ∅ ∈ ω ∧ 𝑦 ∈ ω ) → ( ∅ +o suc 𝑦 ) = suc ( ∅ +o 𝑦 ) ) |
18 |
16 17
|
mpan |
⊢ ( 𝑦 ∈ ω → ( ∅ +o suc 𝑦 ) = suc ( ∅ +o 𝑦 ) ) |
19 |
|
suceq |
⊢ ( ( ∅ +o 𝑦 ) = 𝑦 → suc ( ∅ +o 𝑦 ) = suc 𝑦 ) |
20 |
19
|
eqeq2d |
⊢ ( ( ∅ +o 𝑦 ) = 𝑦 → ( ( ∅ +o suc 𝑦 ) = suc ( ∅ +o 𝑦 ) ↔ ( ∅ +o suc 𝑦 ) = suc 𝑦 ) ) |
21 |
18 20
|
syl5ibcom |
⊢ ( 𝑦 ∈ ω → ( ( ∅ +o 𝑦 ) = 𝑦 → ( ∅ +o suc 𝑦 ) = suc 𝑦 ) ) |
22 |
3 6 9 12 15 21
|
finds |
⊢ ( 𝐴 ∈ ω → ( ∅ +o 𝐴 ) = 𝐴 ) |