Description: The absolute value of a nonzero integer is a positive integer. (Contributed by Paul Chapman, 21-Mar-2011) (Proof shortened by Andrew Salmon, 25-May-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | nnabscl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( abs ‘ 𝑁 ) ∈ ℕ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zabscl | ⊢ ( 𝑁 ∈ ℤ → ( abs ‘ 𝑁 ) ∈ ℤ ) | |
2 | 1 | adantr | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( abs ‘ 𝑁 ) ∈ ℤ ) |
3 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
4 | absgt0 | ⊢ ( 𝑁 ∈ ℂ → ( 𝑁 ≠ 0 ↔ 0 < ( abs ‘ 𝑁 ) ) ) | |
5 | 3 4 | syl | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 ≠ 0 ↔ 0 < ( abs ‘ 𝑁 ) ) ) |
6 | 5 | biimpa | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → 0 < ( abs ‘ 𝑁 ) ) |
7 | elnnz | ⊢ ( ( abs ‘ 𝑁 ) ∈ ℕ ↔ ( ( abs ‘ 𝑁 ) ∈ ℤ ∧ 0 < ( abs ‘ 𝑁 ) ) ) | |
8 | 2 6 7 | sylanbrc | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( abs ‘ 𝑁 ) ∈ ℕ ) |