Metamath Proof Explorer


Theorem nnabscl

Description: The absolute value of a nonzero integer is a positive integer. (Contributed by Paul Chapman, 21-Mar-2011) (Proof shortened by Andrew Salmon, 25-May-2011)

Ref Expression
Assertion nnabscl ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( abs ‘ 𝑁 ) ∈ ℕ )

Proof

Step Hyp Ref Expression
1 zabscl ( 𝑁 ∈ ℤ → ( abs ‘ 𝑁 ) ∈ ℤ )
2 1 adantr ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( abs ‘ 𝑁 ) ∈ ℤ )
3 zcn ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ )
4 absgt0 ( 𝑁 ∈ ℂ → ( 𝑁 ≠ 0 ↔ 0 < ( abs ‘ 𝑁 ) ) )
5 3 4 syl ( 𝑁 ∈ ℤ → ( 𝑁 ≠ 0 ↔ 0 < ( abs ‘ 𝑁 ) ) )
6 5 biimpa ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → 0 < ( abs ‘ 𝑁 ) )
7 elnnz ( ( abs ‘ 𝑁 ) ∈ ℕ ↔ ( ( abs ‘ 𝑁 ) ∈ ℤ ∧ 0 < ( abs ‘ 𝑁 ) ) )
8 2 6 7 sylanbrc ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( abs ‘ 𝑁 ) ∈ ℕ )