Step |
Hyp |
Ref |
Expression |
1 |
|
nnaword |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ∧ 𝐴 ∈ ω ) → ( 𝐵 ⊆ 𝐶 ↔ ( 𝐴 +o 𝐵 ) ⊆ ( 𝐴 +o 𝐶 ) ) ) |
2 |
1
|
3comr |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐵 ⊆ 𝐶 ↔ ( 𝐴 +o 𝐵 ) ⊆ ( 𝐴 +o 𝐶 ) ) ) |
3 |
|
nnaword |
⊢ ( ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → ( 𝐶 ⊆ 𝐵 ↔ ( 𝐴 +o 𝐶 ) ⊆ ( 𝐴 +o 𝐵 ) ) ) |
4 |
3
|
3com13 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐶 ⊆ 𝐵 ↔ ( 𝐴 +o 𝐶 ) ⊆ ( 𝐴 +o 𝐵 ) ) ) |
5 |
2 4
|
anbi12d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ↔ ( ( 𝐴 +o 𝐵 ) ⊆ ( 𝐴 +o 𝐶 ) ∧ ( 𝐴 +o 𝐶 ) ⊆ ( 𝐴 +o 𝐵 ) ) ) ) |
6 |
5
|
bicomd |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( ( 𝐴 +o 𝐵 ) ⊆ ( 𝐴 +o 𝐶 ) ∧ ( 𝐴 +o 𝐶 ) ⊆ ( 𝐴 +o 𝐵 ) ) ↔ ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ) ) |
7 |
|
eqss |
⊢ ( ( 𝐴 +o 𝐵 ) = ( 𝐴 +o 𝐶 ) ↔ ( ( 𝐴 +o 𝐵 ) ⊆ ( 𝐴 +o 𝐶 ) ∧ ( 𝐴 +o 𝐶 ) ⊆ ( 𝐴 +o 𝐵 ) ) ) |
8 |
|
eqss |
⊢ ( 𝐵 = 𝐶 ↔ ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ) |
9 |
6 7 8
|
3bitr4g |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐴 +o 𝐵 ) = ( 𝐴 +o 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |