| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝐵 ) ) |
| 2 |
1
|
eleq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 +o 𝑥 ) ∈ ω ↔ ( 𝐴 +o 𝐵 ) ∈ ω ) ) |
| 3 |
2
|
imbi2d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∈ ω → ( 𝐴 +o 𝑥 ) ∈ ω ) ↔ ( 𝐴 ∈ ω → ( 𝐴 +o 𝐵 ) ∈ ω ) ) ) |
| 4 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o ∅ ) ) |
| 5 |
4
|
eleq1d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 +o 𝑥 ) ∈ ω ↔ ( 𝐴 +o ∅ ) ∈ ω ) ) |
| 6 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝑦 ) ) |
| 7 |
6
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 +o 𝑥 ) ∈ ω ↔ ( 𝐴 +o 𝑦 ) ∈ ω ) ) |
| 8 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o suc 𝑦 ) ) |
| 9 |
8
|
eleq1d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 +o 𝑥 ) ∈ ω ↔ ( 𝐴 +o suc 𝑦 ) ∈ ω ) ) |
| 10 |
|
nna0 |
⊢ ( 𝐴 ∈ ω → ( 𝐴 +o ∅ ) = 𝐴 ) |
| 11 |
10
|
eleq1d |
⊢ ( 𝐴 ∈ ω → ( ( 𝐴 +o ∅ ) ∈ ω ↔ 𝐴 ∈ ω ) ) |
| 12 |
11
|
ibir |
⊢ ( 𝐴 ∈ ω → ( 𝐴 +o ∅ ) ∈ ω ) |
| 13 |
|
peano2 |
⊢ ( ( 𝐴 +o 𝑦 ) ∈ ω → suc ( 𝐴 +o 𝑦 ) ∈ ω ) |
| 14 |
|
nnasuc |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 +o suc 𝑦 ) = suc ( 𝐴 +o 𝑦 ) ) |
| 15 |
14
|
eleq1d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 +o suc 𝑦 ) ∈ ω ↔ suc ( 𝐴 +o 𝑦 ) ∈ ω ) ) |
| 16 |
13 15
|
imbitrrid |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 +o 𝑦 ) ∈ ω → ( 𝐴 +o suc 𝑦 ) ∈ ω ) ) |
| 17 |
16
|
expcom |
⊢ ( 𝑦 ∈ ω → ( 𝐴 ∈ ω → ( ( 𝐴 +o 𝑦 ) ∈ ω → ( 𝐴 +o suc 𝑦 ) ∈ ω ) ) ) |
| 18 |
5 7 9 12 17
|
finds2 |
⊢ ( 𝑥 ∈ ω → ( 𝐴 ∈ ω → ( 𝐴 +o 𝑥 ) ∈ ω ) ) |
| 19 |
3 18
|
vtoclga |
⊢ ( 𝐵 ∈ ω → ( 𝐴 ∈ ω → ( 𝐴 +o 𝐵 ) ∈ ω ) ) |
| 20 |
19
|
impcom |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +o 𝐵 ) ∈ ω ) |