Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( 𝐴 + 𝑥 ) = ( 𝐴 + 1 ) ) |
2 |
1
|
eleq1d |
⊢ ( 𝑥 = 1 → ( ( 𝐴 + 𝑥 ) ∈ ℕ ↔ ( 𝐴 + 1 ) ∈ ℕ ) ) |
3 |
2
|
imbi2d |
⊢ ( 𝑥 = 1 → ( ( 𝐴 ∈ ℕ → ( 𝐴 + 𝑥 ) ∈ ℕ ) ↔ ( 𝐴 ∈ ℕ → ( 𝐴 + 1 ) ∈ ℕ ) ) ) |
4 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 + 𝑥 ) = ( 𝐴 + 𝑦 ) ) |
5 |
4
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 + 𝑥 ) ∈ ℕ ↔ ( 𝐴 + 𝑦 ) ∈ ℕ ) ) |
6 |
5
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∈ ℕ → ( 𝐴 + 𝑥 ) ∈ ℕ ) ↔ ( 𝐴 ∈ ℕ → ( 𝐴 + 𝑦 ) ∈ ℕ ) ) ) |
7 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐴 + 𝑥 ) = ( 𝐴 + ( 𝑦 + 1 ) ) ) |
8 |
7
|
eleq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝐴 + 𝑥 ) ∈ ℕ ↔ ( 𝐴 + ( 𝑦 + 1 ) ) ∈ ℕ ) ) |
9 |
8
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝐴 ∈ ℕ → ( 𝐴 + 𝑥 ) ∈ ℕ ) ↔ ( 𝐴 ∈ ℕ → ( 𝐴 + ( 𝑦 + 1 ) ) ∈ ℕ ) ) ) |
10 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 + 𝑥 ) = ( 𝐴 + 𝐵 ) ) |
11 |
10
|
eleq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 + 𝑥 ) ∈ ℕ ↔ ( 𝐴 + 𝐵 ) ∈ ℕ ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∈ ℕ → ( 𝐴 + 𝑥 ) ∈ ℕ ) ↔ ( 𝐴 ∈ ℕ → ( 𝐴 + 𝐵 ) ∈ ℕ ) ) ) |
13 |
|
peano2nn |
⊢ ( 𝐴 ∈ ℕ → ( 𝐴 + 1 ) ∈ ℕ ) |
14 |
|
peano2nn |
⊢ ( ( 𝐴 + 𝑦 ) ∈ ℕ → ( ( 𝐴 + 𝑦 ) + 1 ) ∈ ℕ ) |
15 |
|
nncn |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℂ ) |
16 |
|
nncn |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) |
17 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
18 |
|
addass |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐴 + 𝑦 ) + 1 ) = ( 𝐴 + ( 𝑦 + 1 ) ) ) |
19 |
17 18
|
mp3an3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝐴 + 𝑦 ) + 1 ) = ( 𝐴 + ( 𝑦 + 1 ) ) ) |
20 |
15 16 19
|
syl2an |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( ( 𝐴 + 𝑦 ) + 1 ) = ( 𝐴 + ( 𝑦 + 1 ) ) ) |
21 |
20
|
eleq1d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( ( ( 𝐴 + 𝑦 ) + 1 ) ∈ ℕ ↔ ( 𝐴 + ( 𝑦 + 1 ) ) ∈ ℕ ) ) |
22 |
14 21
|
syl5ib |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( ( 𝐴 + 𝑦 ) ∈ ℕ → ( 𝐴 + ( 𝑦 + 1 ) ) ∈ ℕ ) ) |
23 |
22
|
expcom |
⊢ ( 𝑦 ∈ ℕ → ( 𝐴 ∈ ℕ → ( ( 𝐴 + 𝑦 ) ∈ ℕ → ( 𝐴 + ( 𝑦 + 1 ) ) ∈ ℕ ) ) ) |
24 |
23
|
a2d |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝐴 ∈ ℕ → ( 𝐴 + 𝑦 ) ∈ ℕ ) → ( 𝐴 ∈ ℕ → ( 𝐴 + ( 𝑦 + 1 ) ) ∈ ℕ ) ) ) |
25 |
3 6 9 12 13 24
|
nnind |
⊢ ( 𝐵 ∈ ℕ → ( 𝐴 ∈ ℕ → ( 𝐴 + 𝐵 ) ∈ ℕ ) ) |
26 |
25
|
impcom |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 + 𝐵 ) ∈ ℕ ) |