| Step | Hyp | Ref | Expression | 
						
							| 1 |  | djueq2 | ⊢ ( 𝑥  =  𝐵  →  ( 𝐴  ⊔  𝑥 )  =  ( 𝐴  ⊔  𝐵 ) ) | 
						
							| 2 |  | oveq2 | ⊢ ( 𝑥  =  𝐵  →  ( 𝐴  +o  𝑥 )  =  ( 𝐴  +o  𝐵 ) ) | 
						
							| 3 | 1 2 | breq12d | ⊢ ( 𝑥  =  𝐵  →  ( ( 𝐴  ⊔  𝑥 )  ≈  ( 𝐴  +o  𝑥 )  ↔  ( 𝐴  ⊔  𝐵 )  ≈  ( 𝐴  +o  𝐵 ) ) ) | 
						
							| 4 | 3 | imbi2d | ⊢ ( 𝑥  =  𝐵  →  ( ( 𝐴  ∈  ω  →  ( 𝐴  ⊔  𝑥 )  ≈  ( 𝐴  +o  𝑥 ) )  ↔  ( 𝐴  ∈  ω  →  ( 𝐴  ⊔  𝐵 )  ≈  ( 𝐴  +o  𝐵 ) ) ) ) | 
						
							| 5 |  | djueq2 | ⊢ ( 𝑥  =  ∅  →  ( 𝐴  ⊔  𝑥 )  =  ( 𝐴  ⊔  ∅ ) ) | 
						
							| 6 |  | oveq2 | ⊢ ( 𝑥  =  ∅  →  ( 𝐴  +o  𝑥 )  =  ( 𝐴  +o  ∅ ) ) | 
						
							| 7 | 5 6 | breq12d | ⊢ ( 𝑥  =  ∅  →  ( ( 𝐴  ⊔  𝑥 )  ≈  ( 𝐴  +o  𝑥 )  ↔  ( 𝐴  ⊔  ∅ )  ≈  ( 𝐴  +o  ∅ ) ) ) | 
						
							| 8 |  | djueq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐴  ⊔  𝑥 )  =  ( 𝐴  ⊔  𝑦 ) ) | 
						
							| 9 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐴  +o  𝑥 )  =  ( 𝐴  +o  𝑦 ) ) | 
						
							| 10 | 8 9 | breq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐴  ⊔  𝑥 )  ≈  ( 𝐴  +o  𝑥 )  ↔  ( 𝐴  ⊔  𝑦 )  ≈  ( 𝐴  +o  𝑦 ) ) ) | 
						
							| 11 |  | djueq2 | ⊢ ( 𝑥  =  suc  𝑦  →  ( 𝐴  ⊔  𝑥 )  =  ( 𝐴  ⊔  suc  𝑦 ) ) | 
						
							| 12 |  | oveq2 | ⊢ ( 𝑥  =  suc  𝑦  →  ( 𝐴  +o  𝑥 )  =  ( 𝐴  +o  suc  𝑦 ) ) | 
						
							| 13 | 11 12 | breq12d | ⊢ ( 𝑥  =  suc  𝑦  →  ( ( 𝐴  ⊔  𝑥 )  ≈  ( 𝐴  +o  𝑥 )  ↔  ( 𝐴  ⊔  suc  𝑦 )  ≈  ( 𝐴  +o  suc  𝑦 ) ) ) | 
						
							| 14 |  | dju0en | ⊢ ( 𝐴  ∈  ω  →  ( 𝐴  ⊔  ∅ )  ≈  𝐴 ) | 
						
							| 15 |  | nna0 | ⊢ ( 𝐴  ∈  ω  →  ( 𝐴  +o  ∅ )  =  𝐴 ) | 
						
							| 16 | 14 15 | breqtrrd | ⊢ ( 𝐴  ∈  ω  →  ( 𝐴  ⊔  ∅ )  ≈  ( 𝐴  +o  ∅ ) ) | 
						
							| 17 |  | 1oex | ⊢ 1o  ∈  V | 
						
							| 18 |  | djuassen | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑦  ∈  ω  ∧  1o  ∈  V )  →  ( ( 𝐴  ⊔  𝑦 )  ⊔  1o )  ≈  ( 𝐴  ⊔  ( 𝑦  ⊔  1o ) ) ) | 
						
							| 19 | 17 18 | mp3an3 | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑦  ∈  ω )  →  ( ( 𝐴  ⊔  𝑦 )  ⊔  1o )  ≈  ( 𝐴  ⊔  ( 𝑦  ⊔  1o ) ) ) | 
						
							| 20 |  | enrefg | ⊢ ( 𝐴  ∈  ω  →  𝐴  ≈  𝐴 ) | 
						
							| 21 |  | nnord | ⊢ ( 𝑦  ∈  ω  →  Ord  𝑦 ) | 
						
							| 22 |  | ordirr | ⊢ ( Ord  𝑦  →  ¬  𝑦  ∈  𝑦 ) | 
						
							| 23 | 21 22 | syl | ⊢ ( 𝑦  ∈  ω  →  ¬  𝑦  ∈  𝑦 ) | 
						
							| 24 |  | dju1en | ⊢ ( ( 𝑦  ∈  ω  ∧  ¬  𝑦  ∈  𝑦 )  →  ( 𝑦  ⊔  1o )  ≈  suc  𝑦 ) | 
						
							| 25 | 23 24 | mpdan | ⊢ ( 𝑦  ∈  ω  →  ( 𝑦  ⊔  1o )  ≈  suc  𝑦 ) | 
						
							| 26 |  | djuen | ⊢ ( ( 𝐴  ≈  𝐴  ∧  ( 𝑦  ⊔  1o )  ≈  suc  𝑦 )  →  ( 𝐴  ⊔  ( 𝑦  ⊔  1o ) )  ≈  ( 𝐴  ⊔  suc  𝑦 ) ) | 
						
							| 27 | 20 25 26 | syl2an | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑦  ∈  ω )  →  ( 𝐴  ⊔  ( 𝑦  ⊔  1o ) )  ≈  ( 𝐴  ⊔  suc  𝑦 ) ) | 
						
							| 28 |  | entr | ⊢ ( ( ( ( 𝐴  ⊔  𝑦 )  ⊔  1o )  ≈  ( 𝐴  ⊔  ( 𝑦  ⊔  1o ) )  ∧  ( 𝐴  ⊔  ( 𝑦  ⊔  1o ) )  ≈  ( 𝐴  ⊔  suc  𝑦 ) )  →  ( ( 𝐴  ⊔  𝑦 )  ⊔  1o )  ≈  ( 𝐴  ⊔  suc  𝑦 ) ) | 
						
							| 29 | 19 27 28 | syl2anc | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑦  ∈  ω )  →  ( ( 𝐴  ⊔  𝑦 )  ⊔  1o )  ≈  ( 𝐴  ⊔  suc  𝑦 ) ) | 
						
							| 30 | 29 | ensymd | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑦  ∈  ω )  →  ( 𝐴  ⊔  suc  𝑦 )  ≈  ( ( 𝐴  ⊔  𝑦 )  ⊔  1o ) ) | 
						
							| 31 | 17 | enref | ⊢ 1o  ≈  1o | 
						
							| 32 |  | djuen | ⊢ ( ( ( 𝐴  ⊔  𝑦 )  ≈  ( 𝐴  +o  𝑦 )  ∧  1o  ≈  1o )  →  ( ( 𝐴  ⊔  𝑦 )  ⊔  1o )  ≈  ( ( 𝐴  +o  𝑦 )  ⊔  1o ) ) | 
						
							| 33 | 31 32 | mpan2 | ⊢ ( ( 𝐴  ⊔  𝑦 )  ≈  ( 𝐴  +o  𝑦 )  →  ( ( 𝐴  ⊔  𝑦 )  ⊔  1o )  ≈  ( ( 𝐴  +o  𝑦 )  ⊔  1o ) ) | 
						
							| 34 | 33 | a1i | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑦  ∈  ω )  →  ( ( 𝐴  ⊔  𝑦 )  ≈  ( 𝐴  +o  𝑦 )  →  ( ( 𝐴  ⊔  𝑦 )  ⊔  1o )  ≈  ( ( 𝐴  +o  𝑦 )  ⊔  1o ) ) ) | 
						
							| 35 |  | nnacl | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑦  ∈  ω )  →  ( 𝐴  +o  𝑦 )  ∈  ω ) | 
						
							| 36 |  | nnord | ⊢ ( ( 𝐴  +o  𝑦 )  ∈  ω  →  Ord  ( 𝐴  +o  𝑦 ) ) | 
						
							| 37 |  | ordirr | ⊢ ( Ord  ( 𝐴  +o  𝑦 )  →  ¬  ( 𝐴  +o  𝑦 )  ∈  ( 𝐴  +o  𝑦 ) ) | 
						
							| 38 | 35 36 37 | 3syl | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑦  ∈  ω )  →  ¬  ( 𝐴  +o  𝑦 )  ∈  ( 𝐴  +o  𝑦 ) ) | 
						
							| 39 |  | dju1en | ⊢ ( ( ( 𝐴  +o  𝑦 )  ∈  ω  ∧  ¬  ( 𝐴  +o  𝑦 )  ∈  ( 𝐴  +o  𝑦 ) )  →  ( ( 𝐴  +o  𝑦 )  ⊔  1o )  ≈  suc  ( 𝐴  +o  𝑦 ) ) | 
						
							| 40 | 35 38 39 | syl2anc | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑦  ∈  ω )  →  ( ( 𝐴  +o  𝑦 )  ⊔  1o )  ≈  suc  ( 𝐴  +o  𝑦 ) ) | 
						
							| 41 |  | nnasuc | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑦  ∈  ω )  →  ( 𝐴  +o  suc  𝑦 )  =  suc  ( 𝐴  +o  𝑦 ) ) | 
						
							| 42 | 40 41 | breqtrrd | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑦  ∈  ω )  →  ( ( 𝐴  +o  𝑦 )  ⊔  1o )  ≈  ( 𝐴  +o  suc  𝑦 ) ) | 
						
							| 43 | 34 42 | jctird | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑦  ∈  ω )  →  ( ( 𝐴  ⊔  𝑦 )  ≈  ( 𝐴  +o  𝑦 )  →  ( ( ( 𝐴  ⊔  𝑦 )  ⊔  1o )  ≈  ( ( 𝐴  +o  𝑦 )  ⊔  1o )  ∧  ( ( 𝐴  +o  𝑦 )  ⊔  1o )  ≈  ( 𝐴  +o  suc  𝑦 ) ) ) ) | 
						
							| 44 |  | entr | ⊢ ( ( ( ( 𝐴  ⊔  𝑦 )  ⊔  1o )  ≈  ( ( 𝐴  +o  𝑦 )  ⊔  1o )  ∧  ( ( 𝐴  +o  𝑦 )  ⊔  1o )  ≈  ( 𝐴  +o  suc  𝑦 ) )  →  ( ( 𝐴  ⊔  𝑦 )  ⊔  1o )  ≈  ( 𝐴  +o  suc  𝑦 ) ) | 
						
							| 45 | 43 44 | syl6 | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑦  ∈  ω )  →  ( ( 𝐴  ⊔  𝑦 )  ≈  ( 𝐴  +o  𝑦 )  →  ( ( 𝐴  ⊔  𝑦 )  ⊔  1o )  ≈  ( 𝐴  +o  suc  𝑦 ) ) ) | 
						
							| 46 |  | entr | ⊢ ( ( ( 𝐴  ⊔  suc  𝑦 )  ≈  ( ( 𝐴  ⊔  𝑦 )  ⊔  1o )  ∧  ( ( 𝐴  ⊔  𝑦 )  ⊔  1o )  ≈  ( 𝐴  +o  suc  𝑦 ) )  →  ( 𝐴  ⊔  suc  𝑦 )  ≈  ( 𝐴  +o  suc  𝑦 ) ) | 
						
							| 47 | 30 45 46 | syl6an | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑦  ∈  ω )  →  ( ( 𝐴  ⊔  𝑦 )  ≈  ( 𝐴  +o  𝑦 )  →  ( 𝐴  ⊔  suc  𝑦 )  ≈  ( 𝐴  +o  suc  𝑦 ) ) ) | 
						
							| 48 | 47 | expcom | ⊢ ( 𝑦  ∈  ω  →  ( 𝐴  ∈  ω  →  ( ( 𝐴  ⊔  𝑦 )  ≈  ( 𝐴  +o  𝑦 )  →  ( 𝐴  ⊔  suc  𝑦 )  ≈  ( 𝐴  +o  suc  𝑦 ) ) ) ) | 
						
							| 49 | 7 10 13 16 48 | finds2 | ⊢ ( 𝑥  ∈  ω  →  ( 𝐴  ∈  ω  →  ( 𝐴  ⊔  𝑥 )  ≈  ( 𝐴  +o  𝑥 ) ) ) | 
						
							| 50 | 4 49 | vtoclga | ⊢ ( 𝐵  ∈  ω  →  ( 𝐴  ∈  ω  →  ( 𝐴  ⊔  𝐵 )  ≈  ( 𝐴  +o  𝐵 ) ) ) | 
						
							| 51 | 50 | impcom | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 𝐴  ⊔  𝐵 )  ≈  ( 𝐴  +o  𝐵 ) ) | 
						
							| 52 |  | carden2b | ⊢ ( ( 𝐴  ⊔  𝐵 )  ≈  ( 𝐴  +o  𝐵 )  →  ( card ‘ ( 𝐴  ⊔  𝐵 ) )  =  ( card ‘ ( 𝐴  +o  𝐵 ) ) ) | 
						
							| 53 | 51 52 | syl | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( card ‘ ( 𝐴  ⊔  𝐵 ) )  =  ( card ‘ ( 𝐴  +o  𝐵 ) ) ) | 
						
							| 54 |  | nnacl | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 𝐴  +o  𝐵 )  ∈  ω ) | 
						
							| 55 |  | cardnn | ⊢ ( ( 𝐴  +o  𝐵 )  ∈  ω  →  ( card ‘ ( 𝐴  +o  𝐵 ) )  =  ( 𝐴  +o  𝐵 ) ) | 
						
							| 56 | 54 55 | syl | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( card ‘ ( 𝐴  +o  𝐵 ) )  =  ( 𝐴  +o  𝐵 ) ) | 
						
							| 57 | 53 56 | eqtrd | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( card ‘ ( 𝐴  ⊔  𝐵 ) )  =  ( 𝐴  +o  𝐵 ) ) |