| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnon | ⊢ ( 𝐴  ∈  ω  →  𝐴  ∈  On ) | 
						
							| 2 |  | nnon | ⊢ ( 𝐵  ∈  ω  →  𝐵  ∈  On ) | 
						
							| 3 |  | onadju | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  +o  𝐵 )  ≈  ( 𝐴  ⊔  𝐵 ) ) | 
						
							| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 𝐴  +o  𝐵 )  ≈  ( 𝐴  ⊔  𝐵 ) ) | 
						
							| 5 |  | carden2b | ⊢ ( ( 𝐴  +o  𝐵 )  ≈  ( 𝐴  ⊔  𝐵 )  →  ( card ‘ ( 𝐴  +o  𝐵 ) )  =  ( card ‘ ( 𝐴  ⊔  𝐵 ) ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( card ‘ ( 𝐴  +o  𝐵 ) )  =  ( card ‘ ( 𝐴  ⊔  𝐵 ) ) ) | 
						
							| 7 |  | nnacl | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 𝐴  +o  𝐵 )  ∈  ω ) | 
						
							| 8 |  | cardnn | ⊢ ( ( 𝐴  +o  𝐵 )  ∈  ω  →  ( card ‘ ( 𝐴  +o  𝐵 ) )  =  ( 𝐴  +o  𝐵 ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( card ‘ ( 𝐴  +o  𝐵 ) )  =  ( 𝐴  +o  𝐵 ) ) | 
						
							| 10 | 6 9 | eqtr3d | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( card ‘ ( 𝐴  ⊔  𝐵 ) )  =  ( 𝐴  +o  𝐵 ) ) |