| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnon |
⊢ ( 𝐴 ∈ ω → 𝐴 ∈ On ) |
| 2 |
|
nnon |
⊢ ( 𝐵 ∈ ω → 𝐵 ∈ On ) |
| 3 |
|
onadju |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) ≈ ( 𝐴 ⊔ 𝐵 ) ) |
| 4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +o 𝐵 ) ≈ ( 𝐴 ⊔ 𝐵 ) ) |
| 5 |
|
carden2b |
⊢ ( ( 𝐴 +o 𝐵 ) ≈ ( 𝐴 ⊔ 𝐵 ) → ( card ‘ ( 𝐴 +o 𝐵 ) ) = ( card ‘ ( 𝐴 ⊔ 𝐵 ) ) ) |
| 6 |
4 5
|
syl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( card ‘ ( 𝐴 +o 𝐵 ) ) = ( card ‘ ( 𝐴 ⊔ 𝐵 ) ) ) |
| 7 |
|
nnacl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +o 𝐵 ) ∈ ω ) |
| 8 |
|
cardnn |
⊢ ( ( 𝐴 +o 𝐵 ) ∈ ω → ( card ‘ ( 𝐴 +o 𝐵 ) ) = ( 𝐴 +o 𝐵 ) ) |
| 9 |
7 8
|
syl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( card ‘ ( 𝐴 +o 𝐵 ) ) = ( 𝐴 +o 𝐵 ) ) |
| 10 |
6 9
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( card ‘ ( 𝐴 ⊔ 𝐵 ) ) = ( 𝐴 +o 𝐵 ) ) |