Metamath Proof Explorer


Theorem nnadjuALT

Description: Shorter proof of nnadju using ax-rep . (Contributed by Paul Chapman, 11-Apr-2009) (Revised by Mario Carneiro, 6-Feb-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion nnadjuALT ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( card ‘ ( 𝐴𝐵 ) ) = ( 𝐴 +o 𝐵 ) )

Proof

Step Hyp Ref Expression
1 nnon ( 𝐴 ∈ ω → 𝐴 ∈ On )
2 nnon ( 𝐵 ∈ ω → 𝐵 ∈ On )
3 onadju ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) ≈ ( 𝐴𝐵 ) )
4 1 2 3 syl2an ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +o 𝐵 ) ≈ ( 𝐴𝐵 ) )
5 carden2b ( ( 𝐴 +o 𝐵 ) ≈ ( 𝐴𝐵 ) → ( card ‘ ( 𝐴 +o 𝐵 ) ) = ( card ‘ ( 𝐴𝐵 ) ) )
6 4 5 syl ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( card ‘ ( 𝐴 +o 𝐵 ) ) = ( card ‘ ( 𝐴𝐵 ) ) )
7 nnacl ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +o 𝐵 ) ∈ ω )
8 cardnn ( ( 𝐴 +o 𝐵 ) ∈ ω → ( card ‘ ( 𝐴 +o 𝐵 ) ) = ( 𝐴 +o 𝐵 ) )
9 7 8 syl ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( card ‘ ( 𝐴 +o 𝐵 ) ) = ( 𝐴 +o 𝐵 ) )
10 6 9 eqtr3d ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( card ‘ ( 𝐴𝐵 ) ) = ( 𝐴 +o 𝐵 ) )