| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnaordi |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) ) |
| 2 |
1
|
3adant1 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) ) |
| 3 |
|
oveq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝐶 +o 𝐴 ) = ( 𝐶 +o 𝐵 ) ) |
| 4 |
3
|
a1i |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐴 = 𝐵 → ( 𝐶 +o 𝐴 ) = ( 𝐶 +o 𝐵 ) ) ) |
| 5 |
|
nnaordi |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐵 ∈ 𝐴 → ( 𝐶 +o 𝐵 ) ∈ ( 𝐶 +o 𝐴 ) ) ) |
| 6 |
5
|
3adant2 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐵 ∈ 𝐴 → ( 𝐶 +o 𝐵 ) ∈ ( 𝐶 +o 𝐴 ) ) ) |
| 7 |
4 6
|
orim12d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) → ( ( 𝐶 +o 𝐴 ) = ( 𝐶 +o 𝐵 ) ∨ ( 𝐶 +o 𝐵 ) ∈ ( 𝐶 +o 𝐴 ) ) ) ) |
| 8 |
7
|
con3d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ¬ ( ( 𝐶 +o 𝐴 ) = ( 𝐶 +o 𝐵 ) ∨ ( 𝐶 +o 𝐵 ) ∈ ( 𝐶 +o 𝐴 ) ) → ¬ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) ) |
| 9 |
|
df-3an |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ↔ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐶 ∈ ω ) ) |
| 10 |
|
ancom |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐶 ∈ ω ) ↔ ( 𝐶 ∈ ω ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) ) |
| 11 |
|
anandi |
⊢ ( ( 𝐶 ∈ ω ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) ↔ ( ( 𝐶 ∈ ω ∧ 𝐴 ∈ ω ) ∧ ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ) ) ) |
| 12 |
9 10 11
|
3bitri |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ↔ ( ( 𝐶 ∈ ω ∧ 𝐴 ∈ ω ) ∧ ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ) ) ) |
| 13 |
|
nnacl |
⊢ ( ( 𝐶 ∈ ω ∧ 𝐴 ∈ ω ) → ( 𝐶 +o 𝐴 ) ∈ ω ) |
| 14 |
|
nnord |
⊢ ( ( 𝐶 +o 𝐴 ) ∈ ω → Ord ( 𝐶 +o 𝐴 ) ) |
| 15 |
13 14
|
syl |
⊢ ( ( 𝐶 ∈ ω ∧ 𝐴 ∈ ω ) → Ord ( 𝐶 +o 𝐴 ) ) |
| 16 |
|
nnacl |
⊢ ( ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐶 +o 𝐵 ) ∈ ω ) |
| 17 |
|
nnord |
⊢ ( ( 𝐶 +o 𝐵 ) ∈ ω → Ord ( 𝐶 +o 𝐵 ) ) |
| 18 |
16 17
|
syl |
⊢ ( ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ) → Ord ( 𝐶 +o 𝐵 ) ) |
| 19 |
15 18
|
anim12i |
⊢ ( ( ( 𝐶 ∈ ω ∧ 𝐴 ∈ ω ) ∧ ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( Ord ( 𝐶 +o 𝐴 ) ∧ Ord ( 𝐶 +o 𝐵 ) ) ) |
| 20 |
12 19
|
sylbi |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( Ord ( 𝐶 +o 𝐴 ) ∧ Ord ( 𝐶 +o 𝐵 ) ) ) |
| 21 |
|
ordtri2 |
⊢ ( ( Ord ( 𝐶 +o 𝐴 ) ∧ Ord ( 𝐶 +o 𝐵 ) ) → ( ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ↔ ¬ ( ( 𝐶 +o 𝐴 ) = ( 𝐶 +o 𝐵 ) ∨ ( 𝐶 +o 𝐵 ) ∈ ( 𝐶 +o 𝐴 ) ) ) ) |
| 22 |
20 21
|
syl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ↔ ¬ ( ( 𝐶 +o 𝐴 ) = ( 𝐶 +o 𝐵 ) ∨ ( 𝐶 +o 𝐵 ) ∈ ( 𝐶 +o 𝐴 ) ) ) ) |
| 23 |
|
nnord |
⊢ ( 𝐴 ∈ ω → Ord 𝐴 ) |
| 24 |
|
nnord |
⊢ ( 𝐵 ∈ ω → Ord 𝐵 ) |
| 25 |
23 24
|
anim12i |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( Ord 𝐴 ∧ Ord 𝐵 ) ) |
| 26 |
25
|
3adant3 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( Ord 𝐴 ∧ Ord 𝐵 ) ) |
| 27 |
|
ordtri2 |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) ) |
| 28 |
26 27
|
syl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐴 ∈ 𝐵 ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) ) |
| 29 |
8 22 28
|
3imtr4d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) → 𝐴 ∈ 𝐵 ) ) |
| 30 |
2 29
|
impbid |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐴 ∈ 𝐵 ↔ ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) ) |