Step |
Hyp |
Ref |
Expression |
1 |
|
nnon |
⊢ ( 𝐵 ∈ ω → 𝐵 ∈ On ) |
2 |
1
|
adantl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → 𝐵 ∈ On ) |
3 |
|
onelss |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵 ) ) |
4 |
2 3
|
syl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵 ) ) |
5 |
|
nnawordex |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ⊆ 𝐵 ↔ ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 ) ) |
6 |
4 5
|
sylibd |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 → ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 ) ) |
7 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑥 ∈ ω ) → 𝐴 ∈ 𝐵 ) |
8 |
|
eleq2 |
⊢ ( ( 𝐴 +o 𝑥 ) = 𝐵 → ( 𝐴 ∈ ( 𝐴 +o 𝑥 ) ↔ 𝐴 ∈ 𝐵 ) ) |
9 |
7 8
|
syl5ibrcom |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑥 ∈ ω ) → ( ( 𝐴 +o 𝑥 ) = 𝐵 → 𝐴 ∈ ( 𝐴 +o 𝑥 ) ) ) |
10 |
|
peano1 |
⊢ ∅ ∈ ω |
11 |
|
nnaord |
⊢ ( ( ∅ ∈ ω ∧ 𝑥 ∈ ω ∧ 𝐴 ∈ ω ) → ( ∅ ∈ 𝑥 ↔ ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝑥 ) ) ) |
12 |
10 11
|
mp3an1 |
⊢ ( ( 𝑥 ∈ ω ∧ 𝐴 ∈ ω ) → ( ∅ ∈ 𝑥 ↔ ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝑥 ) ) ) |
13 |
12
|
ancoms |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( ∅ ∈ 𝑥 ↔ ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝑥 ) ) ) |
14 |
|
nna0 |
⊢ ( 𝐴 ∈ ω → ( 𝐴 +o ∅ ) = 𝐴 ) |
15 |
14
|
adantr |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( 𝐴 +o ∅ ) = 𝐴 ) |
16 |
15
|
eleq1d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝑥 ) ↔ 𝐴 ∈ ( 𝐴 +o 𝑥 ) ) ) |
17 |
13 16
|
bitrd |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( ∅ ∈ 𝑥 ↔ 𝐴 ∈ ( 𝐴 +o 𝑥 ) ) ) |
18 |
17
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑥 ∈ ω ) → ( ∅ ∈ 𝑥 ↔ 𝐴 ∈ ( 𝐴 +o 𝑥 ) ) ) |
19 |
9 18
|
sylibrd |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑥 ∈ ω ) → ( ( 𝐴 +o 𝑥 ) = 𝐵 → ∅ ∈ 𝑥 ) ) |
20 |
19
|
ancrd |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑥 ∈ ω ) → ( ( 𝐴 +o 𝑥 ) = 𝐵 → ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) |
21 |
20
|
reximdva |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐴 ∈ 𝐵 ) → ( ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 → ∃ 𝑥 ∈ ω ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) |
22 |
21
|
ex |
⊢ ( 𝐴 ∈ ω → ( 𝐴 ∈ 𝐵 → ( ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 → ∃ 𝑥 ∈ ω ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) ) |
23 |
22
|
adantr |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 → ( ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 → ∃ 𝑥 ∈ ω ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) ) |
24 |
6 23
|
mpdd |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 → ∃ 𝑥 ∈ ω ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) |
25 |
17
|
biimpa |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) ∧ ∅ ∈ 𝑥 ) → 𝐴 ∈ ( 𝐴 +o 𝑥 ) ) |
26 |
25 8
|
syl5ibcom |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) ∧ ∅ ∈ 𝑥 ) → ( ( 𝐴 +o 𝑥 ) = 𝐵 → 𝐴 ∈ 𝐵 ) ) |
27 |
26
|
expimpd |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → 𝐴 ∈ 𝐵 ) ) |
28 |
27
|
rexlimdva |
⊢ ( 𝐴 ∈ ω → ( ∃ 𝑥 ∈ ω ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → 𝐴 ∈ 𝐵 ) ) |
29 |
28
|
adantr |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ∃ 𝑥 ∈ ω ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → 𝐴 ∈ 𝐵 ) ) |
30 |
24 29
|
impbid |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ∈ ω ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) |