| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnon |
⊢ ( 𝐵 ∈ ω → 𝐵 ∈ On ) |
| 2 |
1
|
adantl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → 𝐵 ∈ On ) |
| 3 |
|
onelss |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵 ) ) |
| 4 |
2 3
|
syl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵 ) ) |
| 5 |
|
nnawordex |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ⊆ 𝐵 ↔ ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 ) ) |
| 6 |
4 5
|
sylibd |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 → ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 ) ) |
| 7 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑥 ∈ ω ) → 𝐴 ∈ 𝐵 ) |
| 8 |
|
eleq2 |
⊢ ( ( 𝐴 +o 𝑥 ) = 𝐵 → ( 𝐴 ∈ ( 𝐴 +o 𝑥 ) ↔ 𝐴 ∈ 𝐵 ) ) |
| 9 |
7 8
|
syl5ibrcom |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑥 ∈ ω ) → ( ( 𝐴 +o 𝑥 ) = 𝐵 → 𝐴 ∈ ( 𝐴 +o 𝑥 ) ) ) |
| 10 |
|
peano1 |
⊢ ∅ ∈ ω |
| 11 |
|
nnaord |
⊢ ( ( ∅ ∈ ω ∧ 𝑥 ∈ ω ∧ 𝐴 ∈ ω ) → ( ∅ ∈ 𝑥 ↔ ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝑥 ) ) ) |
| 12 |
10 11
|
mp3an1 |
⊢ ( ( 𝑥 ∈ ω ∧ 𝐴 ∈ ω ) → ( ∅ ∈ 𝑥 ↔ ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝑥 ) ) ) |
| 13 |
12
|
ancoms |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( ∅ ∈ 𝑥 ↔ ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝑥 ) ) ) |
| 14 |
|
nna0 |
⊢ ( 𝐴 ∈ ω → ( 𝐴 +o ∅ ) = 𝐴 ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( 𝐴 +o ∅ ) = 𝐴 ) |
| 16 |
15
|
eleq1d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝑥 ) ↔ 𝐴 ∈ ( 𝐴 +o 𝑥 ) ) ) |
| 17 |
13 16
|
bitrd |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( ∅ ∈ 𝑥 ↔ 𝐴 ∈ ( 𝐴 +o 𝑥 ) ) ) |
| 18 |
17
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑥 ∈ ω ) → ( ∅ ∈ 𝑥 ↔ 𝐴 ∈ ( 𝐴 +o 𝑥 ) ) ) |
| 19 |
9 18
|
sylibrd |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑥 ∈ ω ) → ( ( 𝐴 +o 𝑥 ) = 𝐵 → ∅ ∈ 𝑥 ) ) |
| 20 |
19
|
ancrd |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑥 ∈ ω ) → ( ( 𝐴 +o 𝑥 ) = 𝐵 → ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) |
| 21 |
20
|
reximdva |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐴 ∈ 𝐵 ) → ( ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 → ∃ 𝑥 ∈ ω ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) |
| 22 |
21
|
ex |
⊢ ( 𝐴 ∈ ω → ( 𝐴 ∈ 𝐵 → ( ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 → ∃ 𝑥 ∈ ω ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 → ( ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 → ∃ 𝑥 ∈ ω ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) ) |
| 24 |
6 23
|
mpdd |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 → ∃ 𝑥 ∈ ω ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) |
| 25 |
17
|
biimpa |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) ∧ ∅ ∈ 𝑥 ) → 𝐴 ∈ ( 𝐴 +o 𝑥 ) ) |
| 26 |
25 8
|
syl5ibcom |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) ∧ ∅ ∈ 𝑥 ) → ( ( 𝐴 +o 𝑥 ) = 𝐵 → 𝐴 ∈ 𝐵 ) ) |
| 27 |
26
|
expimpd |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → 𝐴 ∈ 𝐵 ) ) |
| 28 |
27
|
rexlimdva |
⊢ ( 𝐴 ∈ ω → ( ∃ 𝑥 ∈ ω ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → 𝐴 ∈ 𝐵 ) ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ∃ 𝑥 ∈ ω ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → 𝐴 ∈ 𝐵 ) ) |
| 30 |
24 29
|
impbid |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ∈ ω ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) |