Metamath Proof Explorer


Theorem nnaordex2

Description: Equivalence for ordering. (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Assertion nnaordex2 ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴𝐵 ↔ ∃ 𝑥 ∈ ω ( 𝐴 +o suc 𝑥 ) = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 nnaordex ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴𝐵 ↔ ∃ 𝑦 ∈ ω ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) )
2 nn0suc ( 𝑦 ∈ ω → ( 𝑦 = ∅ ∨ ∃ 𝑥 ∈ ω 𝑦 = suc 𝑥 ) )
3 2 ad2antrl ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑦 ∈ ω ∧ ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) ) → ( 𝑦 = ∅ ∨ ∃ 𝑥 ∈ ω 𝑦 = suc 𝑥 ) )
4 simprrl ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑦 ∈ ω ∧ ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) ) → ∅ ∈ 𝑦 )
5 n0i ( ∅ ∈ 𝑦 → ¬ 𝑦 = ∅ )
6 4 5 syl ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑦 ∈ ω ∧ ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) ) → ¬ 𝑦 = ∅ )
7 3 6 orcnd ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑦 ∈ ω ∧ ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) ) → ∃ 𝑥 ∈ ω 𝑦 = suc 𝑥 )
8 simprrr ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑦 ∈ ω ∧ ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) ) → ( 𝐴 +o 𝑦 ) = 𝐵 )
9 oveq2 ( 𝑦 = suc 𝑥 → ( 𝐴 +o 𝑦 ) = ( 𝐴 +o suc 𝑥 ) )
10 9 eqeq1d ( 𝑦 = suc 𝑥 → ( ( 𝐴 +o 𝑦 ) = 𝐵 ↔ ( 𝐴 +o suc 𝑥 ) = 𝐵 ) )
11 8 10 syl5ibcom ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑦 ∈ ω ∧ ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) ) → ( 𝑦 = suc 𝑥 → ( 𝐴 +o suc 𝑥 ) = 𝐵 ) )
12 11 reximdv ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑦 ∈ ω ∧ ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) ) → ( ∃ 𝑥 ∈ ω 𝑦 = suc 𝑥 → ∃ 𝑥 ∈ ω ( 𝐴 +o suc 𝑥 ) = 𝐵 ) )
13 7 12 mpd ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑦 ∈ ω ∧ ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) ) → ∃ 𝑥 ∈ ω ( 𝐴 +o suc 𝑥 ) = 𝐵 )
14 13 rexlimdvaa ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ∃ 𝑦 ∈ ω ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) → ∃ 𝑥 ∈ ω ( 𝐴 +o suc 𝑥 ) = 𝐵 ) )
15 peano2 ( 𝑥 ∈ ω → suc 𝑥 ∈ ω )
16 15 ad2antrl ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑥 ∈ ω ∧ ( 𝐴 +o suc 𝑥 ) = 𝐵 ) ) → suc 𝑥 ∈ ω )
17 nnord ( 𝑥 ∈ ω → Ord 𝑥 )
18 17 ad2antrl ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑥 ∈ ω ∧ ( 𝐴 +o suc 𝑥 ) = 𝐵 ) ) → Ord 𝑥 )
19 0elsuc ( Ord 𝑥 → ∅ ∈ suc 𝑥 )
20 18 19 syl ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑥 ∈ ω ∧ ( 𝐴 +o suc 𝑥 ) = 𝐵 ) ) → ∅ ∈ suc 𝑥 )
21 simprr ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑥 ∈ ω ∧ ( 𝐴 +o suc 𝑥 ) = 𝐵 ) ) → ( 𝐴 +o suc 𝑥 ) = 𝐵 )
22 eleq2 ( 𝑦 = suc 𝑥 → ( ∅ ∈ 𝑦 ↔ ∅ ∈ suc 𝑥 ) )
23 22 10 anbi12d ( 𝑦 = suc 𝑥 → ( ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ↔ ( ∅ ∈ suc 𝑥 ∧ ( 𝐴 +o suc 𝑥 ) = 𝐵 ) ) )
24 23 rspcev ( ( suc 𝑥 ∈ ω ∧ ( ∅ ∈ suc 𝑥 ∧ ( 𝐴 +o suc 𝑥 ) = 𝐵 ) ) → ∃ 𝑦 ∈ ω ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) )
25 16 20 21 24 syl12anc ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑥 ∈ ω ∧ ( 𝐴 +o suc 𝑥 ) = 𝐵 ) ) → ∃ 𝑦 ∈ ω ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) )
26 25 rexlimdvaa ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ∃ 𝑥 ∈ ω ( 𝐴 +o suc 𝑥 ) = 𝐵 → ∃ 𝑦 ∈ ω ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) )
27 14 26 impbid ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ∃ 𝑦 ∈ ω ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ↔ ∃ 𝑥 ∈ ω ( 𝐴 +o suc 𝑥 ) = 𝐵 ) )
28 1 27 bitrd ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴𝐵 ↔ ∃ 𝑥 ∈ ω ( 𝐴 +o suc 𝑥 ) = 𝐵 ) )