Step |
Hyp |
Ref |
Expression |
1 |
|
nnaordex |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑦 ∈ ω ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) ) |
2 |
|
nn0suc |
⊢ ( 𝑦 ∈ ω → ( 𝑦 = ∅ ∨ ∃ 𝑥 ∈ ω 𝑦 = suc 𝑥 ) ) |
3 |
2
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑦 ∈ ω ∧ ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) ) → ( 𝑦 = ∅ ∨ ∃ 𝑥 ∈ ω 𝑦 = suc 𝑥 ) ) |
4 |
|
simprrl |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑦 ∈ ω ∧ ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) ) → ∅ ∈ 𝑦 ) |
5 |
|
n0i |
⊢ ( ∅ ∈ 𝑦 → ¬ 𝑦 = ∅ ) |
6 |
4 5
|
syl |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑦 ∈ ω ∧ ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) ) → ¬ 𝑦 = ∅ ) |
7 |
3 6
|
orcnd |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑦 ∈ ω ∧ ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) ) → ∃ 𝑥 ∈ ω 𝑦 = suc 𝑥 ) |
8 |
|
simprrr |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑦 ∈ ω ∧ ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) ) → ( 𝐴 +o 𝑦 ) = 𝐵 ) |
9 |
|
oveq2 |
⊢ ( 𝑦 = suc 𝑥 → ( 𝐴 +o 𝑦 ) = ( 𝐴 +o suc 𝑥 ) ) |
10 |
9
|
eqeq1d |
⊢ ( 𝑦 = suc 𝑥 → ( ( 𝐴 +o 𝑦 ) = 𝐵 ↔ ( 𝐴 +o suc 𝑥 ) = 𝐵 ) ) |
11 |
8 10
|
syl5ibcom |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑦 ∈ ω ∧ ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) ) → ( 𝑦 = suc 𝑥 → ( 𝐴 +o suc 𝑥 ) = 𝐵 ) ) |
12 |
11
|
reximdv |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑦 ∈ ω ∧ ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) ) → ( ∃ 𝑥 ∈ ω 𝑦 = suc 𝑥 → ∃ 𝑥 ∈ ω ( 𝐴 +o suc 𝑥 ) = 𝐵 ) ) |
13 |
7 12
|
mpd |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑦 ∈ ω ∧ ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) ) → ∃ 𝑥 ∈ ω ( 𝐴 +o suc 𝑥 ) = 𝐵 ) |
14 |
13
|
rexlimdvaa |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ∃ 𝑦 ∈ ω ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) → ∃ 𝑥 ∈ ω ( 𝐴 +o suc 𝑥 ) = 𝐵 ) ) |
15 |
|
peano2 |
⊢ ( 𝑥 ∈ ω → suc 𝑥 ∈ ω ) |
16 |
15
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑥 ∈ ω ∧ ( 𝐴 +o suc 𝑥 ) = 𝐵 ) ) → suc 𝑥 ∈ ω ) |
17 |
|
nnord |
⊢ ( 𝑥 ∈ ω → Ord 𝑥 ) |
18 |
17
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑥 ∈ ω ∧ ( 𝐴 +o suc 𝑥 ) = 𝐵 ) ) → Ord 𝑥 ) |
19 |
|
0elsuc |
⊢ ( Ord 𝑥 → ∅ ∈ suc 𝑥 ) |
20 |
18 19
|
syl |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑥 ∈ ω ∧ ( 𝐴 +o suc 𝑥 ) = 𝐵 ) ) → ∅ ∈ suc 𝑥 ) |
21 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑥 ∈ ω ∧ ( 𝐴 +o suc 𝑥 ) = 𝐵 ) ) → ( 𝐴 +o suc 𝑥 ) = 𝐵 ) |
22 |
|
eleq2 |
⊢ ( 𝑦 = suc 𝑥 → ( ∅ ∈ 𝑦 ↔ ∅ ∈ suc 𝑥 ) ) |
23 |
22 10
|
anbi12d |
⊢ ( 𝑦 = suc 𝑥 → ( ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ↔ ( ∅ ∈ suc 𝑥 ∧ ( 𝐴 +o suc 𝑥 ) = 𝐵 ) ) ) |
24 |
23
|
rspcev |
⊢ ( ( suc 𝑥 ∈ ω ∧ ( ∅ ∈ suc 𝑥 ∧ ( 𝐴 +o suc 𝑥 ) = 𝐵 ) ) → ∃ 𝑦 ∈ ω ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) |
25 |
16 20 21 24
|
syl12anc |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑥 ∈ ω ∧ ( 𝐴 +o suc 𝑥 ) = 𝐵 ) ) → ∃ 𝑦 ∈ ω ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) |
26 |
25
|
rexlimdvaa |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ∃ 𝑥 ∈ ω ( 𝐴 +o suc 𝑥 ) = 𝐵 → ∃ 𝑦 ∈ ω ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) ) |
27 |
14 26
|
impbid |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ∃ 𝑦 ∈ ω ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ↔ ∃ 𝑥 ∈ ω ( 𝐴 +o suc 𝑥 ) = 𝐵 ) ) |
28 |
1 27
|
bitrd |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ∈ ω ( 𝐴 +o suc 𝑥 ) = 𝐵 ) ) |