Step |
Hyp |
Ref |
Expression |
1 |
|
elnn |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω ) → 𝐴 ∈ ω ) |
2 |
1
|
ancoms |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ ω ) |
3 |
2
|
adantll |
⊢ ( ( ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ ω ) |
4 |
|
nnord |
⊢ ( 𝐵 ∈ ω → Ord 𝐵 ) |
5 |
|
ordsucss |
⊢ ( Ord 𝐵 → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) |
6 |
4 5
|
syl |
⊢ ( 𝐵 ∈ ω → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) |
7 |
6
|
ad2antlr |
⊢ ( ( ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ∈ ω ) → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) |
8 |
|
peano2b |
⊢ ( 𝐴 ∈ ω ↔ suc 𝐴 ∈ ω ) |
9 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝐴 → ( 𝐶 +o 𝑥 ) = ( 𝐶 +o suc 𝐴 ) ) |
10 |
9
|
sseq2d |
⊢ ( 𝑥 = suc 𝐴 → ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑥 ) ↔ ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o suc 𝐴 ) ) ) |
11 |
10
|
imbi2d |
⊢ ( 𝑥 = suc 𝐴 → ( ( 𝐶 ∈ ω → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑥 ) ) ↔ ( 𝐶 ∈ ω → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o suc 𝐴 ) ) ) ) |
12 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐶 +o 𝑥 ) = ( 𝐶 +o 𝑦 ) ) |
13 |
12
|
sseq2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑥 ) ↔ ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑦 ) ) ) |
14 |
13
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐶 ∈ ω → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑥 ) ) ↔ ( 𝐶 ∈ ω → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑦 ) ) ) ) |
15 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐶 +o 𝑥 ) = ( 𝐶 +o suc 𝑦 ) ) |
16 |
15
|
sseq2d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑥 ) ↔ ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o suc 𝑦 ) ) ) |
17 |
16
|
imbi2d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐶 ∈ ω → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑥 ) ) ↔ ( 𝐶 ∈ ω → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o suc 𝑦 ) ) ) ) |
18 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐶 +o 𝑥 ) = ( 𝐶 +o 𝐵 ) ) |
19 |
18
|
sseq2d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑥 ) ↔ ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ) ) |
20 |
19
|
imbi2d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐶 ∈ ω → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑥 ) ) ↔ ( 𝐶 ∈ ω → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ) ) ) |
21 |
|
ssid |
⊢ ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o suc 𝐴 ) |
22 |
21
|
2a1i |
⊢ ( suc 𝐴 ∈ ω → ( 𝐶 ∈ ω → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o suc 𝐴 ) ) ) |
23 |
|
sssucid |
⊢ ( 𝐶 +o 𝑦 ) ⊆ suc ( 𝐶 +o 𝑦 ) |
24 |
|
sstr2 |
⊢ ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑦 ) → ( ( 𝐶 +o 𝑦 ) ⊆ suc ( 𝐶 +o 𝑦 ) → ( 𝐶 +o suc 𝐴 ) ⊆ suc ( 𝐶 +o 𝑦 ) ) ) |
25 |
23 24
|
mpi |
⊢ ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑦 ) → ( 𝐶 +o suc 𝐴 ) ⊆ suc ( 𝐶 +o 𝑦 ) ) |
26 |
|
nnasuc |
⊢ ( ( 𝐶 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐶 +o suc 𝑦 ) = suc ( 𝐶 +o 𝑦 ) ) |
27 |
26
|
ancoms |
⊢ ( ( 𝑦 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐶 +o suc 𝑦 ) = suc ( 𝐶 +o 𝑦 ) ) |
28 |
27
|
sseq2d |
⊢ ( ( 𝑦 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o suc 𝑦 ) ↔ ( 𝐶 +o suc 𝐴 ) ⊆ suc ( 𝐶 +o 𝑦 ) ) ) |
29 |
25 28
|
syl5ibr |
⊢ ( ( 𝑦 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑦 ) → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o suc 𝑦 ) ) ) |
30 |
29
|
ex |
⊢ ( 𝑦 ∈ ω → ( 𝐶 ∈ ω → ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑦 ) → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o suc 𝑦 ) ) ) ) |
31 |
30
|
ad2antrr |
⊢ ( ( ( 𝑦 ∈ ω ∧ suc 𝐴 ∈ ω ) ∧ suc 𝐴 ⊆ 𝑦 ) → ( 𝐶 ∈ ω → ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑦 ) → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o suc 𝑦 ) ) ) ) |
32 |
31
|
a2d |
⊢ ( ( ( 𝑦 ∈ ω ∧ suc 𝐴 ∈ ω ) ∧ suc 𝐴 ⊆ 𝑦 ) → ( ( 𝐶 ∈ ω → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑦 ) ) → ( 𝐶 ∈ ω → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o suc 𝑦 ) ) ) ) |
33 |
11 14 17 20 22 32
|
findsg |
⊢ ( ( ( 𝐵 ∈ ω ∧ suc 𝐴 ∈ ω ) ∧ suc 𝐴 ⊆ 𝐵 ) → ( 𝐶 ∈ ω → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ) ) |
34 |
33
|
exp31 |
⊢ ( 𝐵 ∈ ω → ( suc 𝐴 ∈ ω → ( suc 𝐴 ⊆ 𝐵 → ( 𝐶 ∈ ω → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ) ) ) ) |
35 |
8 34
|
syl5bi |
⊢ ( 𝐵 ∈ ω → ( 𝐴 ∈ ω → ( suc 𝐴 ⊆ 𝐵 → ( 𝐶 ∈ ω → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ) ) ) ) |
36 |
35
|
com4r |
⊢ ( 𝐶 ∈ ω → ( 𝐵 ∈ ω → ( 𝐴 ∈ ω → ( suc 𝐴 ⊆ 𝐵 → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ) ) ) ) |
37 |
36
|
imp31 |
⊢ ( ( ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ∈ ω ) → ( suc 𝐴 ⊆ 𝐵 → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ) ) |
38 |
|
nnasuc |
⊢ ( ( 𝐶 ∈ ω ∧ 𝐴 ∈ ω ) → ( 𝐶 +o suc 𝐴 ) = suc ( 𝐶 +o 𝐴 ) ) |
39 |
38
|
sseq1d |
⊢ ( ( 𝐶 ∈ ω ∧ 𝐴 ∈ ω ) → ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ↔ suc ( 𝐶 +o 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ) ) |
40 |
|
ovex |
⊢ ( 𝐶 +o 𝐴 ) ∈ V |
41 |
|
sucssel |
⊢ ( ( 𝐶 +o 𝐴 ) ∈ V → ( suc ( 𝐶 +o 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) ) |
42 |
40 41
|
ax-mp |
⊢ ( suc ( 𝐶 +o 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) |
43 |
39 42
|
syl6bi |
⊢ ( ( 𝐶 ∈ ω ∧ 𝐴 ∈ ω ) → ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) ) |
44 |
43
|
adantlr |
⊢ ( ( ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ∈ ω ) → ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) ) |
45 |
7 37 44
|
3syld |
⊢ ( ( ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ∈ ω ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) ) |
46 |
45
|
imp |
⊢ ( ( ( ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ∈ ω ) ∧ 𝐴 ∈ 𝐵 ) → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) |
47 |
46
|
an32s |
⊢ ( ( ( ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ∈ 𝐵 ) ∧ 𝐴 ∈ ω ) → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) |
48 |
3 47
|
mpdan |
⊢ ( ( ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ∈ 𝐵 ) → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) |
49 |
48
|
ex |
⊢ ( ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) ) |
50 |
49
|
ancoms |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) ) |