| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oaword1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ⊆ ( 𝐴 +o 𝐵 ) ) |
| 2 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
| 3 |
|
ordom |
⊢ Ord ω |
| 4 |
|
ordtr2 |
⊢ ( ( Ord 𝐴 ∧ Ord ω ) → ( ( 𝐴 ⊆ ( 𝐴 +o 𝐵 ) ∧ ( 𝐴 +o 𝐵 ) ∈ ω ) → 𝐴 ∈ ω ) ) |
| 5 |
2 3 4
|
sylancl |
⊢ ( 𝐴 ∈ On → ( ( 𝐴 ⊆ ( 𝐴 +o 𝐵 ) ∧ ( 𝐴 +o 𝐵 ) ∈ ω ) → 𝐴 ∈ ω ) ) |
| 6 |
5
|
expd |
⊢ ( 𝐴 ∈ On → ( 𝐴 ⊆ ( 𝐴 +o 𝐵 ) → ( ( 𝐴 +o 𝐵 ) ∈ ω → 𝐴 ∈ ω ) ) ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ ( 𝐴 +o 𝐵 ) → ( ( 𝐴 +o 𝐵 ) ∈ ω → 𝐴 ∈ ω ) ) ) |
| 8 |
1 7
|
mpd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) ∈ ω → 𝐴 ∈ ω ) ) |
| 9 |
|
oaword2 |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → 𝐵 ⊆ ( 𝐴 +o 𝐵 ) ) |
| 10 |
9
|
ancoms |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐵 ⊆ ( 𝐴 +o 𝐵 ) ) |
| 11 |
|
eloni |
⊢ ( 𝐵 ∈ On → Ord 𝐵 ) |
| 12 |
|
ordtr2 |
⊢ ( ( Ord 𝐵 ∧ Ord ω ) → ( ( 𝐵 ⊆ ( 𝐴 +o 𝐵 ) ∧ ( 𝐴 +o 𝐵 ) ∈ ω ) → 𝐵 ∈ ω ) ) |
| 13 |
11 3 12
|
sylancl |
⊢ ( 𝐵 ∈ On → ( ( 𝐵 ⊆ ( 𝐴 +o 𝐵 ) ∧ ( 𝐴 +o 𝐵 ) ∈ ω ) → 𝐵 ∈ ω ) ) |
| 14 |
13
|
expd |
⊢ ( 𝐵 ∈ On → ( 𝐵 ⊆ ( 𝐴 +o 𝐵 ) → ( ( 𝐴 +o 𝐵 ) ∈ ω → 𝐵 ∈ ω ) ) ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ⊆ ( 𝐴 +o 𝐵 ) → ( ( 𝐴 +o 𝐵 ) ∈ ω → 𝐵 ∈ ω ) ) ) |
| 16 |
10 15
|
mpd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) ∈ ω → 𝐵 ∈ ω ) ) |
| 17 |
8 16
|
jcad |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) ∈ ω → ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) ) |
| 18 |
|
nnacl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +o 𝐵 ) ∈ ω ) |
| 19 |
17 18
|
impbid1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) ∈ ω ↔ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) ) |