Metamath Proof Explorer


Theorem nnarcl

Description: Reverse closure law for addition of natural numbers. Exercise 1 of TakeutiZaring p. 62 and its converse. (Contributed by NM, 12-Dec-2004)

Ref Expression
Assertion nnarcl ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) ∈ ω ↔ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) )

Proof

Step Hyp Ref Expression
1 oaword1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ⊆ ( 𝐴 +o 𝐵 ) )
2 eloni ( 𝐴 ∈ On → Ord 𝐴 )
3 ordom Ord ω
4 ordtr2 ( ( Ord 𝐴 ∧ Ord ω ) → ( ( 𝐴 ⊆ ( 𝐴 +o 𝐵 ) ∧ ( 𝐴 +o 𝐵 ) ∈ ω ) → 𝐴 ∈ ω ) )
5 2 3 4 sylancl ( 𝐴 ∈ On → ( ( 𝐴 ⊆ ( 𝐴 +o 𝐵 ) ∧ ( 𝐴 +o 𝐵 ) ∈ ω ) → 𝐴 ∈ ω ) )
6 5 expd ( 𝐴 ∈ On → ( 𝐴 ⊆ ( 𝐴 +o 𝐵 ) → ( ( 𝐴 +o 𝐵 ) ∈ ω → 𝐴 ∈ ω ) ) )
7 6 adantr ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ ( 𝐴 +o 𝐵 ) → ( ( 𝐴 +o 𝐵 ) ∈ ω → 𝐴 ∈ ω ) ) )
8 1 7 mpd ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) ∈ ω → 𝐴 ∈ ω ) )
9 oaword2 ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → 𝐵 ⊆ ( 𝐴 +o 𝐵 ) )
10 9 ancoms ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐵 ⊆ ( 𝐴 +o 𝐵 ) )
11 eloni ( 𝐵 ∈ On → Ord 𝐵 )
12 ordtr2 ( ( Ord 𝐵 ∧ Ord ω ) → ( ( 𝐵 ⊆ ( 𝐴 +o 𝐵 ) ∧ ( 𝐴 +o 𝐵 ) ∈ ω ) → 𝐵 ∈ ω ) )
13 11 3 12 sylancl ( 𝐵 ∈ On → ( ( 𝐵 ⊆ ( 𝐴 +o 𝐵 ) ∧ ( 𝐴 +o 𝐵 ) ∈ ω ) → 𝐵 ∈ ω ) )
14 13 expd ( 𝐵 ∈ On → ( 𝐵 ⊆ ( 𝐴 +o 𝐵 ) → ( ( 𝐴 +o 𝐵 ) ∈ ω → 𝐵 ∈ ω ) ) )
15 14 adantl ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ⊆ ( 𝐴 +o 𝐵 ) → ( ( 𝐴 +o 𝐵 ) ∈ ω → 𝐵 ∈ ω ) ) )
16 10 15 mpd ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) ∈ ω → 𝐵 ∈ ω ) )
17 8 16 jcad ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) ∈ ω → ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) )
18 nnacl ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +o 𝐵 ) ∈ ω )
19 17 18 impbid1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) ∈ ω ↔ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) )