| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqtr3 | ⊢ ( ( ( 𝐴  +o  𝑥 )  =  𝐵  ∧  ( 𝐴  +o  𝑦 )  =  𝐵 )  →  ( 𝐴  +o  𝑥 )  =  ( 𝐴  +o  𝑦 ) ) | 
						
							| 2 |  | nnacan | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑥  ∈  ω  ∧  𝑦  ∈  ω )  →  ( ( 𝐴  +o  𝑥 )  =  ( 𝐴  +o  𝑦 )  ↔  𝑥  =  𝑦 ) ) | 
						
							| 3 | 1 2 | imbitrid | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑥  ∈  ω  ∧  𝑦  ∈  ω )  →  ( ( ( 𝐴  +o  𝑥 )  =  𝐵  ∧  ( 𝐴  +o  𝑦 )  =  𝐵 )  →  𝑥  =  𝑦 ) ) | 
						
							| 4 | 3 | 3expb | ⊢ ( ( 𝐴  ∈  ω  ∧  ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω ) )  →  ( ( ( 𝐴  +o  𝑥 )  =  𝐵  ∧  ( 𝐴  +o  𝑦 )  =  𝐵 )  →  𝑥  =  𝑦 ) ) | 
						
							| 5 | 4 | ralrimivva | ⊢ ( 𝐴  ∈  ω  →  ∀ 𝑥  ∈  ω ∀ 𝑦  ∈  ω ( ( ( 𝐴  +o  𝑥 )  =  𝐵  ∧  ( 𝐴  +o  𝑦 )  =  𝐵 )  →  𝑥  =  𝑦 ) ) | 
						
							| 6 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐴  +o  𝑥 )  =  ( 𝐴  +o  𝑦 ) ) | 
						
							| 7 | 6 | eqeq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐴  +o  𝑥 )  =  𝐵  ↔  ( 𝐴  +o  𝑦 )  =  𝐵 ) ) | 
						
							| 8 | 7 | rmo4 | ⊢ ( ∃* 𝑥  ∈  ω ( 𝐴  +o  𝑥 )  =  𝐵  ↔  ∀ 𝑥  ∈  ω ∀ 𝑦  ∈  ω ( ( ( 𝐴  +o  𝑥 )  =  𝐵  ∧  ( 𝐴  +o  𝑦 )  =  𝐵 )  →  𝑥  =  𝑦 ) ) | 
						
							| 9 | 5 8 | sylibr | ⊢ ( 𝐴  ∈  ω  →  ∃* 𝑥  ∈  ω ( 𝐴  +o  𝑥 )  =  𝐵 ) |