Metamath Proof Explorer
Description: Addition with successor. Theorem 4I(A2) of Enderton p. 79.
(Contributed by NM, 20-Sep-1995) (Revised by Mario Carneiro, 14-Nov-2014)
|
|
Ref |
Expression |
|
Assertion |
nnasuc |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +o suc 𝐵 ) = suc ( 𝐴 +o 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nnon |
⊢ ( 𝐴 ∈ ω → 𝐴 ∈ On ) |
2 |
|
onasuc |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 +o suc 𝐵 ) = suc ( 𝐴 +o 𝐵 ) ) |
3 |
1 2
|
sylan |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +o suc 𝐵 ) = suc ( 𝐴 +o 𝐵 ) ) |