Step |
Hyp |
Ref |
Expression |
1 |
|
nnaord |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐵 ∈ 𝐴 ↔ ( 𝐶 +o 𝐵 ) ∈ ( 𝐶 +o 𝐴 ) ) ) |
2 |
1
|
3com12 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐵 ∈ 𝐴 ↔ ( 𝐶 +o 𝐵 ) ∈ ( 𝐶 +o 𝐴 ) ) ) |
3 |
2
|
notbid |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ¬ 𝐵 ∈ 𝐴 ↔ ¬ ( 𝐶 +o 𝐵 ) ∈ ( 𝐶 +o 𝐴 ) ) ) |
4 |
|
nnord |
⊢ ( 𝐴 ∈ ω → Ord 𝐴 ) |
5 |
|
nnord |
⊢ ( 𝐵 ∈ ω → Ord 𝐵 ) |
6 |
|
ordtri1 |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴 ) ) |
7 |
4 5 6
|
syl2an |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴 ) ) |
8 |
7
|
3adant3 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴 ) ) |
9 |
|
nnacl |
⊢ ( ( 𝐶 ∈ ω ∧ 𝐴 ∈ ω ) → ( 𝐶 +o 𝐴 ) ∈ ω ) |
10 |
9
|
ancoms |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐶 +o 𝐴 ) ∈ ω ) |
11 |
10
|
3adant2 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐶 +o 𝐴 ) ∈ ω ) |
12 |
|
nnacl |
⊢ ( ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐶 +o 𝐵 ) ∈ ω ) |
13 |
12
|
ancoms |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐶 +o 𝐵 ) ∈ ω ) |
14 |
13
|
3adant1 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐶 +o 𝐵 ) ∈ ω ) |
15 |
|
nnord |
⊢ ( ( 𝐶 +o 𝐴 ) ∈ ω → Ord ( 𝐶 +o 𝐴 ) ) |
16 |
|
nnord |
⊢ ( ( 𝐶 +o 𝐵 ) ∈ ω → Ord ( 𝐶 +o 𝐵 ) ) |
17 |
|
ordtri1 |
⊢ ( ( Ord ( 𝐶 +o 𝐴 ) ∧ Ord ( 𝐶 +o 𝐵 ) ) → ( ( 𝐶 +o 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ↔ ¬ ( 𝐶 +o 𝐵 ) ∈ ( 𝐶 +o 𝐴 ) ) ) |
18 |
15 16 17
|
syl2an |
⊢ ( ( ( 𝐶 +o 𝐴 ) ∈ ω ∧ ( 𝐶 +o 𝐵 ) ∈ ω ) → ( ( 𝐶 +o 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ↔ ¬ ( 𝐶 +o 𝐵 ) ∈ ( 𝐶 +o 𝐴 ) ) ) |
19 |
11 14 18
|
syl2anc |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐶 +o 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ↔ ¬ ( 𝐶 +o 𝐵 ) ∈ ( 𝐶 +o 𝐴 ) ) ) |
20 |
3 8 19
|
3bitr4d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐶 +o 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ) ) |