Metamath Proof Explorer


Theorem nnaword1

Description: Weak ordering property of addition. (Contributed by NM, 9-Nov-2002) (Revised by Mario Carneiro, 15-Nov-2014)

Ref Expression
Assertion nnaword1 ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → 𝐴 ⊆ ( 𝐴 +o 𝐵 ) )

Proof

Step Hyp Ref Expression
1 nna0 ( 𝐴 ∈ ω → ( 𝐴 +o ∅ ) = 𝐴 )
2 1 adantr ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +o ∅ ) = 𝐴 )
3 0ss ∅ ⊆ 𝐵
4 peano1 ∅ ∈ ω
5 nnaword ( ( ∅ ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → ( ∅ ⊆ 𝐵 ↔ ( 𝐴 +o ∅ ) ⊆ ( 𝐴 +o 𝐵 ) ) )
6 5 3com13 ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ ∅ ∈ ω ) → ( ∅ ⊆ 𝐵 ↔ ( 𝐴 +o ∅ ) ⊆ ( 𝐴 +o 𝐵 ) ) )
7 4 6 mp3an3 ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ∅ ⊆ 𝐵 ↔ ( 𝐴 +o ∅ ) ⊆ ( 𝐴 +o 𝐵 ) ) )
8 3 7 mpbii ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +o ∅ ) ⊆ ( 𝐴 +o 𝐵 ) )
9 2 8 eqsstrrd ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → 𝐴 ⊆ ( 𝐴 +o 𝐵 ) )