Description: Weak ordering property of addition. (Contributed by NM, 9-Nov-2002) (Revised by Mario Carneiro, 15-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | nnaword1 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → 𝐴 ⊆ ( 𝐴 +o 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nna0 | ⊢ ( 𝐴 ∈ ω → ( 𝐴 +o ∅ ) = 𝐴 ) | |
2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +o ∅ ) = 𝐴 ) |
3 | 0ss | ⊢ ∅ ⊆ 𝐵 | |
4 | peano1 | ⊢ ∅ ∈ ω | |
5 | nnaword | ⊢ ( ( ∅ ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → ( ∅ ⊆ 𝐵 ↔ ( 𝐴 +o ∅ ) ⊆ ( 𝐴 +o 𝐵 ) ) ) | |
6 | 5 | 3com13 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ ∅ ∈ ω ) → ( ∅ ⊆ 𝐵 ↔ ( 𝐴 +o ∅ ) ⊆ ( 𝐴 +o 𝐵 ) ) ) |
7 | 4 6 | mp3an3 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ∅ ⊆ 𝐵 ↔ ( 𝐴 +o ∅ ) ⊆ ( 𝐴 +o 𝐵 ) ) ) |
8 | 3 7 | mpbii | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +o ∅ ) ⊆ ( 𝐴 +o 𝐵 ) ) |
9 | 2 8 | eqsstrrd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → 𝐴 ⊆ ( 𝐴 +o 𝐵 ) ) |