Metamath Proof Explorer


Theorem nnaword2

Description: Weak ordering property of addition. (Contributed by NM, 9-Nov-2002)

Ref Expression
Assertion nnaword2 ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → 𝐴 ⊆ ( 𝐵 +o 𝐴 ) )

Proof

Step Hyp Ref Expression
1 nnaword1 ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → 𝐴 ⊆ ( 𝐴 +o 𝐵 ) )
2 nnacom ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +o 𝐵 ) = ( 𝐵 +o 𝐴 ) )
3 1 2 sseqtrd ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → 𝐴 ⊆ ( 𝐵 +o 𝐴 ) )