| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 +o 𝑦 ) = ( 𝐴 +o 𝐵 ) ) |
| 2 |
1
|
sseq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝐵 ⊆ ( 𝐴 +o 𝑦 ) ↔ 𝐵 ⊆ ( 𝐴 +o 𝐵 ) ) ) |
| 3 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐵 ∈ ω ) |
| 4 |
|
nnon |
⊢ ( 𝐵 ∈ ω → 𝐵 ∈ On ) |
| 5 |
3 4
|
syl |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐵 ∈ On ) |
| 6 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ∈ ω ) |
| 7 |
|
nnaword2 |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → 𝐵 ⊆ ( 𝐴 +o 𝐵 ) ) |
| 8 |
3 6 7
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐵 ⊆ ( 𝐴 +o 𝐵 ) ) |
| 9 |
2 5 8
|
elrabd |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐵 ∈ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) |
| 10 |
|
intss1 |
⊢ ( 𝐵 ∈ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } → ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ⊆ 𝐵 ) |
| 11 |
9 10
|
syl |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ⊆ 𝐵 ) |
| 12 |
|
ssrab2 |
⊢ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ⊆ On |
| 13 |
9
|
ne0d |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ≠ ∅ ) |
| 14 |
|
oninton |
⊢ ( ( { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ⊆ On ∧ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ≠ ∅ ) → ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ∈ On ) |
| 15 |
12 13 14
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ∈ On ) |
| 16 |
|
eloni |
⊢ ( ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ∈ On → Ord ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) |
| 17 |
15 16
|
syl |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → Ord ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) |
| 18 |
|
ordom |
⊢ Ord ω |
| 19 |
|
ordtr2 |
⊢ ( ( Ord ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ∧ Ord ω ) → ( ( ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ⊆ 𝐵 ∧ 𝐵 ∈ ω ) → ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ∈ ω ) ) |
| 20 |
17 18 19
|
sylancl |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → ( ( ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ⊆ 𝐵 ∧ 𝐵 ∈ ω ) → ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ∈ ω ) ) |
| 21 |
11 3 20
|
mp2and |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ∈ ω ) |
| 22 |
|
nna0 |
⊢ ( 𝐴 ∈ ω → ( 𝐴 +o ∅ ) = 𝐴 ) |
| 23 |
22
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 +o ∅ ) = 𝐴 ) |
| 24 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ⊆ 𝐵 ) |
| 25 |
23 24
|
eqsstrd |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 +o ∅ ) ⊆ 𝐵 ) |
| 26 |
|
oveq2 |
⊢ ( ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = ∅ → ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) = ( 𝐴 +o ∅ ) ) |
| 27 |
26
|
sseq1d |
⊢ ( ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = ∅ → ( ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) ⊆ 𝐵 ↔ ( 𝐴 +o ∅ ) ⊆ 𝐵 ) ) |
| 28 |
25 27
|
syl5ibrcom |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → ( ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = ∅ → ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) ⊆ 𝐵 ) ) |
| 29 |
|
simprr |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) ) → ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) |
| 30 |
29
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) ) → ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) = ( 𝐴 +o suc 𝑥 ) ) |
| 31 |
6
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) ) → 𝐴 ∈ ω ) |
| 32 |
|
simprl |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) ) → 𝑥 ∈ ω ) |
| 33 |
|
nnasuc |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( 𝐴 +o suc 𝑥 ) = suc ( 𝐴 +o 𝑥 ) ) |
| 34 |
31 32 33
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) ) → ( 𝐴 +o suc 𝑥 ) = suc ( 𝐴 +o 𝑥 ) ) |
| 35 |
30 34
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) ) → ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) = suc ( 𝐴 +o 𝑥 ) ) |
| 36 |
|
nnord |
⊢ ( 𝐵 ∈ ω → Ord 𝐵 ) |
| 37 |
3 36
|
syl |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → Ord 𝐵 ) |
| 38 |
37
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) ) → Ord 𝐵 ) |
| 39 |
|
nnon |
⊢ ( 𝑥 ∈ ω → 𝑥 ∈ On ) |
| 40 |
39
|
adantr |
⊢ ( ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) → 𝑥 ∈ On ) |
| 41 |
|
vex |
⊢ 𝑥 ∈ V |
| 42 |
41
|
sucid |
⊢ 𝑥 ∈ suc 𝑥 |
| 43 |
|
simpr |
⊢ ( ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) → ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) |
| 44 |
42 43
|
eleqtrrid |
⊢ ( ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) → 𝑥 ∈ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) |
| 45 |
|
oveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐴 +o 𝑦 ) = ( 𝐴 +o 𝑥 ) ) |
| 46 |
45
|
sseq2d |
⊢ ( 𝑦 = 𝑥 → ( 𝐵 ⊆ ( 𝐴 +o 𝑦 ) ↔ 𝐵 ⊆ ( 𝐴 +o 𝑥 ) ) ) |
| 47 |
46
|
onnminsb |
⊢ ( 𝑥 ∈ On → ( 𝑥 ∈ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } → ¬ 𝐵 ⊆ ( 𝐴 +o 𝑥 ) ) ) |
| 48 |
40 44 47
|
sylc |
⊢ ( ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) → ¬ 𝐵 ⊆ ( 𝐴 +o 𝑥 ) ) |
| 49 |
48
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) ) → ¬ 𝐵 ⊆ ( 𝐴 +o 𝑥 ) ) |
| 50 |
|
nnacl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( 𝐴 +o 𝑥 ) ∈ ω ) |
| 51 |
31 32 50
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) ) → ( 𝐴 +o 𝑥 ) ∈ ω ) |
| 52 |
|
nnord |
⊢ ( ( 𝐴 +o 𝑥 ) ∈ ω → Ord ( 𝐴 +o 𝑥 ) ) |
| 53 |
51 52
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) ) → Ord ( 𝐴 +o 𝑥 ) ) |
| 54 |
|
ordtri1 |
⊢ ( ( Ord 𝐵 ∧ Ord ( 𝐴 +o 𝑥 ) ) → ( 𝐵 ⊆ ( 𝐴 +o 𝑥 ) ↔ ¬ ( 𝐴 +o 𝑥 ) ∈ 𝐵 ) ) |
| 55 |
38 53 54
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) ) → ( 𝐵 ⊆ ( 𝐴 +o 𝑥 ) ↔ ¬ ( 𝐴 +o 𝑥 ) ∈ 𝐵 ) ) |
| 56 |
55
|
con2bid |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) ) → ( ( 𝐴 +o 𝑥 ) ∈ 𝐵 ↔ ¬ 𝐵 ⊆ ( 𝐴 +o 𝑥 ) ) ) |
| 57 |
49 56
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) ) → ( 𝐴 +o 𝑥 ) ∈ 𝐵 ) |
| 58 |
|
ordsucss |
⊢ ( Ord 𝐵 → ( ( 𝐴 +o 𝑥 ) ∈ 𝐵 → suc ( 𝐴 +o 𝑥 ) ⊆ 𝐵 ) ) |
| 59 |
38 57 58
|
sylc |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) ) → suc ( 𝐴 +o 𝑥 ) ⊆ 𝐵 ) |
| 60 |
35 59
|
eqsstrd |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) ) → ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) ⊆ 𝐵 ) |
| 61 |
60
|
rexlimdvaa |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → ( ∃ 𝑥 ∈ ω ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 → ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) ⊆ 𝐵 ) ) |
| 62 |
|
nn0suc |
⊢ ( ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ∈ ω → ( ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = ∅ ∨ ∃ 𝑥 ∈ ω ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) ) |
| 63 |
21 62
|
syl |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → ( ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = ∅ ∨ ∃ 𝑥 ∈ ω ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) ) |
| 64 |
28 61 63
|
mpjaod |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) ⊆ 𝐵 ) |
| 65 |
|
onint |
⊢ ( ( { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ⊆ On ∧ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ≠ ∅ ) → ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ∈ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) |
| 66 |
12 13 65
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ∈ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) |
| 67 |
|
nfrab1 |
⊢ Ⅎ 𝑦 { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } |
| 68 |
67
|
nfint |
⊢ Ⅎ 𝑦 ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } |
| 69 |
|
nfcv |
⊢ Ⅎ 𝑦 On |
| 70 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
| 71 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
| 72 |
|
nfcv |
⊢ Ⅎ 𝑦 +o |
| 73 |
71 72 68
|
nfov |
⊢ Ⅎ 𝑦 ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) |
| 74 |
70 73
|
nfss |
⊢ Ⅎ 𝑦 𝐵 ⊆ ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) |
| 75 |
|
oveq2 |
⊢ ( 𝑦 = ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } → ( 𝐴 +o 𝑦 ) = ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) ) |
| 76 |
75
|
sseq2d |
⊢ ( 𝑦 = ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } → ( 𝐵 ⊆ ( 𝐴 +o 𝑦 ) ↔ 𝐵 ⊆ ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) ) ) |
| 77 |
68 69 74 76
|
elrabf |
⊢ ( ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ∈ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ↔ ( ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ∈ On ∧ 𝐵 ⊆ ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) ) ) |
| 78 |
77
|
simprbi |
⊢ ( ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ∈ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } → 𝐵 ⊆ ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) ) |
| 79 |
66 78
|
syl |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐵 ⊆ ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) ) |
| 80 |
64 79
|
eqssd |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) = 𝐵 ) |
| 81 |
|
oveq2 |
⊢ ( 𝑥 = ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) ) |
| 82 |
81
|
eqeq1d |
⊢ ( 𝑥 = ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } → ( ( 𝐴 +o 𝑥 ) = 𝐵 ↔ ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) = 𝐵 ) ) |
| 83 |
82
|
rspcev |
⊢ ( ( ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ∈ ω ∧ ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) = 𝐵 ) → ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 ) |
| 84 |
21 80 83
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 ) |
| 85 |
84
|
ex |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ⊆ 𝐵 → ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 ) ) |
| 86 |
|
nnaword1 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → 𝐴 ⊆ ( 𝐴 +o 𝑥 ) ) |
| 87 |
86
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝑥 ∈ ω ) → 𝐴 ⊆ ( 𝐴 +o 𝑥 ) ) |
| 88 |
|
sseq2 |
⊢ ( ( 𝐴 +o 𝑥 ) = 𝐵 → ( 𝐴 ⊆ ( 𝐴 +o 𝑥 ) ↔ 𝐴 ⊆ 𝐵 ) ) |
| 89 |
87 88
|
syl5ibcom |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝑥 ∈ ω ) → ( ( 𝐴 +o 𝑥 ) = 𝐵 → 𝐴 ⊆ 𝐵 ) ) |
| 90 |
89
|
rexlimdva |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 → 𝐴 ⊆ 𝐵 ) ) |
| 91 |
85 90
|
impbid |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ⊆ 𝐵 ↔ ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 ) ) |