Description: Cancellation law for subtraction. (Contributed by NM, 21-Jun-2005) (Proof shortened by Andrew Salmon, 19-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nncan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − ( 𝐴 − 𝐵 ) ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subsub2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − ( 𝐴 − 𝐵 ) ) = ( 𝐴 + ( 𝐵 − 𝐴 ) ) ) | |
| 2 | 1 | 3anidm12 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − ( 𝐴 − 𝐵 ) ) = ( 𝐴 + ( 𝐵 − 𝐴 ) ) ) |
| 3 | pncan3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + ( 𝐵 − 𝐴 ) ) = 𝐵 ) | |
| 4 | 2 3 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − ( 𝐴 − 𝐵 ) ) = 𝐵 ) |