Description: Cancellation law for subtraction. (Contributed by NM, 21-Jun-2005) (Proof shortened by Andrew Salmon, 19-Nov-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | nncan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − ( 𝐴 − 𝐵 ) ) = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subsub2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − ( 𝐴 − 𝐵 ) ) = ( 𝐴 + ( 𝐵 − 𝐴 ) ) ) | |
2 | 1 | 3anidm12 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − ( 𝐴 − 𝐵 ) ) = ( 𝐴 + ( 𝐵 − 𝐴 ) ) ) |
3 | pncan3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + ( 𝐵 − 𝐴 ) ) = 𝐵 ) | |
4 | 2 3 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − ( 𝐴 − 𝐵 ) ) = 𝐵 ) |