Description: Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 16-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nncansd.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
nncansd.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | ||
Assertion | nncansd | ⊢ ( 𝜑 → ( 𝐴 -s ( 𝐴 -s 𝐵 ) ) = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nncansd.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
2 | nncansd.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | |
3 | 1 1 2 | subsubs2d | ⊢ ( 𝜑 → ( 𝐴 -s ( 𝐴 -s 𝐵 ) ) = ( 𝐴 +s ( 𝐵 -s 𝐴 ) ) ) |
4 | pncan3s | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 +s ( 𝐵 -s 𝐴 ) ) = 𝐵 ) | |
5 | 1 2 4 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 +s ( 𝐵 -s 𝐴 ) ) = 𝐵 ) |
6 | 3 5 | eqtrd | ⊢ ( 𝜑 → ( 𝐴 -s ( 𝐴 -s 𝐵 ) ) = 𝐵 ) |