Metamath Proof Explorer


Theorem nncansd

Description: Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Hypotheses nncansd.1 ( 𝜑𝐴 No )
nncansd.2 ( 𝜑𝐵 No )
Assertion nncansd ( 𝜑 → ( 𝐴 -s ( 𝐴 -s 𝐵 ) ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 nncansd.1 ( 𝜑𝐴 No )
2 nncansd.2 ( 𝜑𝐵 No )
3 1 1 2 subsubs2d ( 𝜑 → ( 𝐴 -s ( 𝐴 -s 𝐵 ) ) = ( 𝐴 +s ( 𝐵 -s 𝐴 ) ) )
4 pncan3s ( ( 𝐴 No 𝐵 No ) → ( 𝐴 +s ( 𝐵 -s 𝐴 ) ) = 𝐵 )
5 1 2 4 syl2anc ( 𝜑 → ( 𝐴 +s ( 𝐵 -s 𝐴 ) ) = 𝐵 )
6 3 5 eqtrd ( 𝜑 → ( 𝐴 -s ( 𝐴 -s 𝐵 ) ) = 𝐵 )