| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑥 = 𝐶 → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o 𝐶 ) ) |
| 2 |
1
|
oveq2d |
⊢ ( 𝑥 = 𝐶 → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( 𝐴 ·o ( 𝐵 +o 𝐶 ) ) ) |
| 3 |
|
oveq2 |
⊢ ( 𝑥 = 𝐶 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o 𝐶 ) ) |
| 4 |
3
|
oveq2d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝐶 ) ) ) |
| 5 |
2 4
|
eqeq12d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ↔ ( 𝐴 ·o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝐶 ) ) ) ) |
| 6 |
5
|
imbi2d |
⊢ ( 𝑥 = 𝐶 → ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ) ↔ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝐶 ) ) ) ) ) |
| 7 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o ∅ ) ) |
| 8 |
7
|
oveq2d |
⊢ ( 𝑥 = ∅ → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( 𝐴 ·o ( 𝐵 +o ∅ ) ) ) |
| 9 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o ∅ ) ) |
| 10 |
9
|
oveq2d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o ∅ ) ) ) |
| 11 |
8 10
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ↔ ( 𝐴 ·o ( 𝐵 +o ∅ ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o ∅ ) ) ) ) |
| 12 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o 𝑦 ) ) |
| 13 |
12
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) ) |
| 14 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o 𝑦 ) ) |
| 15 |
14
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) |
| 16 |
13 15
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ↔ ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) |
| 17 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o suc 𝑦 ) ) |
| 18 |
17
|
oveq2d |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) ) |
| 19 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o suc 𝑦 ) ) |
| 20 |
19
|
oveq2d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) ) |
| 21 |
18 20
|
eqeq12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ↔ ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) ) ) |
| 22 |
|
nna0 |
⊢ ( 𝐵 ∈ ω → ( 𝐵 +o ∅ ) = 𝐵 ) |
| 23 |
22
|
adantl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐵 +o ∅ ) = 𝐵 ) |
| 24 |
23
|
oveq2d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o ( 𝐵 +o ∅ ) ) = ( 𝐴 ·o 𝐵 ) ) |
| 25 |
|
nnmcl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o 𝐵 ) ∈ ω ) |
| 26 |
|
nna0 |
⊢ ( ( 𝐴 ·o 𝐵 ) ∈ ω → ( ( 𝐴 ·o 𝐵 ) +o ∅ ) = ( 𝐴 ·o 𝐵 ) ) |
| 27 |
25 26
|
syl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐴 ·o 𝐵 ) +o ∅ ) = ( 𝐴 ·o 𝐵 ) ) |
| 28 |
24 27
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o ( 𝐵 +o ∅ ) ) = ( ( 𝐴 ·o 𝐵 ) +o ∅ ) ) |
| 29 |
|
nnm0 |
⊢ ( 𝐴 ∈ ω → ( 𝐴 ·o ∅ ) = ∅ ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o ∅ ) = ∅ ) |
| 31 |
30
|
oveq2d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o ∅ ) ) = ( ( 𝐴 ·o 𝐵 ) +o ∅ ) ) |
| 32 |
28 31
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o ( 𝐵 +o ∅ ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o ∅ ) ) ) |
| 33 |
|
oveq1 |
⊢ ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) +o 𝐴 ) = ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) ) |
| 34 |
|
nnasuc |
⊢ ( ( 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐵 +o suc 𝑦 ) = suc ( 𝐵 +o 𝑦 ) ) |
| 35 |
34
|
3adant1 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐵 +o suc 𝑦 ) = suc ( 𝐵 +o 𝑦 ) ) |
| 36 |
35
|
oveq2d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) = ( 𝐴 ·o suc ( 𝐵 +o 𝑦 ) ) ) |
| 37 |
|
nnacl |
⊢ ( ( 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐵 +o 𝑦 ) ∈ ω ) |
| 38 |
|
nnmsuc |
⊢ ( ( 𝐴 ∈ ω ∧ ( 𝐵 +o 𝑦 ) ∈ ω ) → ( 𝐴 ·o suc ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) +o 𝐴 ) ) |
| 39 |
37 38
|
sylan2 |
⊢ ( ( 𝐴 ∈ ω ∧ ( 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) ) → ( 𝐴 ·o suc ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) +o 𝐴 ) ) |
| 40 |
39
|
3impb |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 ·o suc ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) +o 𝐴 ) ) |
| 41 |
36 40
|
eqtrd |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) = ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) +o 𝐴 ) ) |
| 42 |
|
nnmsuc |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 ·o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) |
| 43 |
42
|
3adant2 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 ·o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) |
| 44 |
43
|
oveq2d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) |
| 45 |
|
nnmcl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 ·o 𝑦 ) ∈ ω ) |
| 46 |
|
nnaass |
⊢ ( ( ( 𝐴 ·o 𝐵 ) ∈ ω ∧ ( 𝐴 ·o 𝑦 ) ∈ ω ∧ 𝐴 ∈ ω ) → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) |
| 47 |
25 46
|
syl3an1 |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝐴 ·o 𝑦 ) ∈ ω ∧ 𝐴 ∈ ω ) → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) |
| 48 |
45 47
|
syl3an2 |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) ∧ 𝐴 ∈ ω ) → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) |
| 49 |
48
|
3exp |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 ∈ ω → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) ) ) |
| 50 |
49
|
exp4b |
⊢ ( 𝐴 ∈ ω → ( 𝐵 ∈ ω → ( 𝐴 ∈ ω → ( 𝑦 ∈ ω → ( 𝐴 ∈ ω → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) ) ) ) ) |
| 51 |
50
|
pm2.43a |
⊢ ( 𝐴 ∈ ω → ( 𝐵 ∈ ω → ( 𝑦 ∈ ω → ( 𝐴 ∈ ω → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) ) ) ) |
| 52 |
51
|
com4r |
⊢ ( 𝐴 ∈ ω → ( 𝐴 ∈ ω → ( 𝐵 ∈ ω → ( 𝑦 ∈ ω → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) ) ) ) |
| 53 |
52
|
pm2.43i |
⊢ ( 𝐴 ∈ ω → ( 𝐵 ∈ ω → ( 𝑦 ∈ ω → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) ) ) |
| 54 |
53
|
3imp |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) |
| 55 |
44 54
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) = ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) ) |
| 56 |
41 55
|
eqeq12d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) ↔ ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) +o 𝐴 ) = ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) ) ) |
| 57 |
33 56
|
imbitrrid |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) ) ) |
| 58 |
57
|
3exp |
⊢ ( 𝐴 ∈ ω → ( 𝐵 ∈ ω → ( 𝑦 ∈ ω → ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) ) ) ) ) |
| 59 |
58
|
com3r |
⊢ ( 𝑦 ∈ ω → ( 𝐴 ∈ ω → ( 𝐵 ∈ ω → ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) ) ) ) ) |
| 60 |
59
|
impd |
⊢ ( 𝑦 ∈ ω → ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) ) ) ) |
| 61 |
11 16 21 32 60
|
finds2 |
⊢ ( 𝑥 ∈ ω → ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ) ) |
| 62 |
6 61
|
vtoclga |
⊢ ( 𝐶 ∈ ω → ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝐶 ) ) ) ) |
| 63 |
62
|
expdcom |
⊢ ( 𝐴 ∈ ω → ( 𝐵 ∈ ω → ( 𝐶 ∈ ω → ( 𝐴 ·o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝐶 ) ) ) ) ) |
| 64 |
63
|
3imp |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐴 ·o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝐶 ) ) ) |