| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							risset | 
							⊢ ( ( 𝐵  /  𝐴 )  ∈  ℕ  ↔  ∃ 𝑥  ∈  ℕ 𝑥  =  ( 𝐵  /  𝐴 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							eqcom | 
							⊢ ( 𝑥  =  ( 𝐵  /  𝐴 )  ↔  ( 𝐵  /  𝐴 )  =  𝑥 )  | 
						
						
							| 3 | 
							
								
							 | 
							nncn | 
							⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℂ )  | 
						
						
							| 4 | 
							
								3
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  ∧  𝑥  ∈  ℕ )  →  𝐵  ∈  ℂ )  | 
						
						
							| 5 | 
							
								
							 | 
							nncn | 
							⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℂ )  | 
						
						
							| 6 | 
							
								5
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  ∧  𝑥  ∈  ℕ )  →  𝐴  ∈  ℂ )  | 
						
						
							| 7 | 
							
								
							 | 
							nncn | 
							⊢ ( 𝑥  ∈  ℕ  →  𝑥  ∈  ℂ )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantl | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  ∧  𝑥  ∈  ℕ )  →  𝑥  ∈  ℂ )  | 
						
						
							| 9 | 
							
								
							 | 
							nnne0 | 
							⊢ ( 𝐴  ∈  ℕ  →  𝐴  ≠  0 )  | 
						
						
							| 10 | 
							
								9
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  ∧  𝑥  ∈  ℕ )  →  𝐴  ≠  0 )  | 
						
						
							| 11 | 
							
								4 6 8 10
							 | 
							divmuld | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  ∧  𝑥  ∈  ℕ )  →  ( ( 𝐵  /  𝐴 )  =  𝑥  ↔  ( 𝐴  ·  𝑥 )  =  𝐵 ) )  | 
						
						
							| 12 | 
							
								2 11
							 | 
							bitrid | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  ∧  𝑥  ∈  ℕ )  →  ( 𝑥  =  ( 𝐵  /  𝐴 )  ↔  ( 𝐴  ·  𝑥 )  =  𝐵 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							rexbidva | 
							⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ∃ 𝑥  ∈  ℕ 𝑥  =  ( 𝐵  /  𝐴 )  ↔  ∃ 𝑥  ∈  ℕ ( 𝐴  ·  𝑥 )  =  𝐵 ) )  | 
						
						
							| 14 | 
							
								1 13
							 | 
							bitr2id | 
							⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ∃ 𝑥  ∈  ℕ ( 𝐴  ·  𝑥 )  =  𝐵  ↔  ( 𝐵  /  𝐴 )  ∈  ℕ ) )  |