Step |
Hyp |
Ref |
Expression |
1 |
|
risset |
⊢ ( ( 𝐵 / 𝐴 ) ∈ ℕ ↔ ∃ 𝑥 ∈ ℕ 𝑥 = ( 𝐵 / 𝐴 ) ) |
2 |
|
eqcom |
⊢ ( 𝑥 = ( 𝐵 / 𝐴 ) ↔ ( 𝐵 / 𝐴 ) = 𝑥 ) |
3 |
|
nncn |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) |
4 |
3
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝑥 ∈ ℕ ) → 𝐵 ∈ ℂ ) |
5 |
|
nncn |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℂ ) |
6 |
5
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝑥 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
7 |
|
nncn |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℂ ) |
8 |
7
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝑥 ∈ ℕ ) → 𝑥 ∈ ℂ ) |
9 |
|
nnne0 |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ≠ 0 ) |
10 |
9
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝑥 ∈ ℕ ) → 𝐴 ≠ 0 ) |
11 |
4 6 8 10
|
divmuld |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝐵 / 𝐴 ) = 𝑥 ↔ ( 𝐴 · 𝑥 ) = 𝐵 ) ) |
12 |
2 11
|
syl5bb |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝑥 ∈ ℕ ) → ( 𝑥 = ( 𝐵 / 𝐴 ) ↔ ( 𝐴 · 𝑥 ) = 𝐵 ) ) |
13 |
12
|
rexbidva |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ∃ 𝑥 ∈ ℕ 𝑥 = ( 𝐵 / 𝐴 ) ↔ ∃ 𝑥 ∈ ℕ ( 𝐴 · 𝑥 ) = 𝐵 ) ) |
14 |
1 13
|
bitr2id |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ∃ 𝑥 ∈ ℕ ( 𝐴 · 𝑥 ) = 𝐵 ↔ ( 𝐵 / 𝐴 ) ∈ ℕ ) ) |