Metamath Proof Explorer


Theorem nndivred

Description: A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses nndivred.1 ( 𝜑𝐴 ∈ ℝ )
nndivred.2 ( 𝜑𝐵 ∈ ℕ )
Assertion nndivred ( 𝜑 → ( 𝐴 / 𝐵 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 nndivred.1 ( 𝜑𝐴 ∈ ℝ )
2 nndivred.2 ( 𝜑𝐵 ∈ ℕ )
3 nndivre ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / 𝐵 ) ∈ ℝ )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴 / 𝐵 ) ∈ ℝ )