Step |
Hyp |
Ref |
Expression |
1 |
|
nnmulcl |
⊢ ( ( ( 𝐵 / 𝐴 ) ∈ ℕ ∧ ( 𝐶 / 𝐵 ) ∈ ℕ ) → ( ( 𝐵 / 𝐴 ) · ( 𝐶 / 𝐵 ) ) ∈ ℕ ) |
2 |
|
nncn |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) |
3 |
2
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
4 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ ) → 𝐶 ∈ ℂ ) |
5 |
|
nncn |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℂ ) |
6 |
|
nnne0 |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ≠ 0 ) |
7 |
5 6
|
jca |
⊢ ( 𝐴 ∈ ℕ → ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) |
8 |
7
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) |
9 |
|
nnne0 |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ≠ 0 ) |
10 |
2 9
|
jca |
⊢ ( 𝐵 ∈ ℕ → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
11 |
10
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
12 |
|
divmul24 |
⊢ ( ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) ) → ( ( 𝐵 / 𝐴 ) · ( 𝐶 / 𝐵 ) ) = ( ( 𝐵 / 𝐵 ) · ( 𝐶 / 𝐴 ) ) ) |
13 |
3 4 8 11 12
|
syl22anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 / 𝐴 ) · ( 𝐶 / 𝐵 ) ) = ( ( 𝐵 / 𝐵 ) · ( 𝐶 / 𝐴 ) ) ) |
14 |
2 9
|
dividd |
⊢ ( 𝐵 ∈ ℕ → ( 𝐵 / 𝐵 ) = 1 ) |
15 |
14
|
oveq1d |
⊢ ( 𝐵 ∈ ℕ → ( ( 𝐵 / 𝐵 ) · ( 𝐶 / 𝐴 ) ) = ( 1 · ( 𝐶 / 𝐴 ) ) ) |
16 |
15
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 / 𝐵 ) · ( 𝐶 / 𝐴 ) ) = ( 1 · ( 𝐶 / 𝐴 ) ) ) |
17 |
|
divcl |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐶 / 𝐴 ) ∈ ℂ ) |
18 |
17
|
3expb |
⊢ ( ( 𝐶 ∈ ℂ ∧ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) → ( 𝐶 / 𝐴 ) ∈ ℂ ) |
19 |
7 18
|
sylan2 |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℕ ) → ( 𝐶 / 𝐴 ) ∈ ℂ ) |
20 |
19
|
ancoms |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐶 ∈ ℂ ) → ( 𝐶 / 𝐴 ) ∈ ℂ ) |
21 |
20
|
mulid2d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐶 ∈ ℂ ) → ( 1 · ( 𝐶 / 𝐴 ) ) = ( 𝐶 / 𝐴 ) ) |
22 |
21
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ ) → ( 1 · ( 𝐶 / 𝐴 ) ) = ( 𝐶 / 𝐴 ) ) |
23 |
13 16 22
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 / 𝐴 ) · ( 𝐶 / 𝐵 ) ) = ( 𝐶 / 𝐴 ) ) |
24 |
23
|
eleq1d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐵 / 𝐴 ) · ( 𝐶 / 𝐵 ) ) ∈ ℕ ↔ ( 𝐶 / 𝐴 ) ∈ ℕ ) ) |
25 |
1 24
|
syl5ib |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐵 / 𝐴 ) ∈ ℕ ∧ ( 𝐶 / 𝐵 ) ∈ ℕ ) → ( 𝐶 / 𝐴 ) ∈ ℕ ) ) |
26 |
25
|
imp |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ ) ∧ ( ( 𝐵 / 𝐴 ) ∈ ℕ ∧ ( 𝐶 / 𝐵 ) ∈ ℕ ) ) → ( 𝐶 / 𝐴 ) ∈ ℕ ) |