Step |
Hyp |
Ref |
Expression |
1 |
|
php2 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ≺ 𝐴 ) |
2 |
1
|
ex |
⊢ ( 𝐴 ∈ ω → ( 𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝐴 ) ) |
3 |
|
domnsym |
⊢ ( 𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴 ) |
4 |
2 3
|
nsyli |
⊢ ( 𝐴 ∈ ω → ( 𝐴 ≼ 𝐵 → ¬ 𝐵 ⊊ 𝐴 ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) → ( 𝐴 ≼ 𝐵 → ¬ 𝐵 ⊊ 𝐴 ) ) |
6 |
|
nnord |
⊢ ( 𝐴 ∈ ω → Ord 𝐴 ) |
7 |
|
eloni |
⊢ ( 𝐵 ∈ On → Ord 𝐵 ) |
8 |
|
ordtri1 |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴 ) ) |
9 |
|
ordelpss |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐵 ∈ 𝐴 ↔ 𝐵 ⊊ 𝐴 ) ) |
10 |
9
|
ancoms |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐵 ∈ 𝐴 ↔ 𝐵 ⊊ 𝐴 ) ) |
11 |
10
|
notbid |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ¬ 𝐵 ∈ 𝐴 ↔ ¬ 𝐵 ⊊ 𝐴 ) ) |
12 |
8 11
|
bitrd |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ⊊ 𝐴 ) ) |
13 |
6 7 12
|
syl2an |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ⊊ 𝐴 ) ) |
14 |
5 13
|
sylibrd |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) → ( 𝐴 ≼ 𝐵 → 𝐴 ⊆ 𝐵 ) ) |
15 |
|
ssdomg |
⊢ ( 𝐵 ∈ On → ( 𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵 ) ) |
16 |
15
|
adantl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵 ) ) |
17 |
14 16
|
impbid |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) → ( 𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) |