Step |
Hyp |
Ref |
Expression |
1 |
|
nnfi |
⊢ ( 𝐴 ∈ ω → 𝐴 ∈ Fin ) |
2 |
|
domnsymfi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ) → ¬ 𝐵 ≺ 𝐴 ) |
3 |
1 2
|
sylan |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐴 ≼ 𝐵 ) → ¬ 𝐵 ≺ 𝐴 ) |
4 |
3
|
ex |
⊢ ( 𝐴 ∈ ω → ( 𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴 ) ) |
5 |
|
php2 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ≺ 𝐴 ) |
6 |
5
|
ex |
⊢ ( 𝐴 ∈ ω → ( 𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝐴 ) ) |
7 |
4 6
|
nsyld |
⊢ ( 𝐴 ∈ ω → ( 𝐴 ≼ 𝐵 → ¬ 𝐵 ⊊ 𝐴 ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) → ( 𝐴 ≼ 𝐵 → ¬ 𝐵 ⊊ 𝐴 ) ) |
9 |
|
nnord |
⊢ ( 𝐴 ∈ ω → Ord 𝐴 ) |
10 |
|
eloni |
⊢ ( 𝐵 ∈ On → Ord 𝐵 ) |
11 |
|
ordtri1 |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴 ) ) |
12 |
|
ordelpss |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐵 ∈ 𝐴 ↔ 𝐵 ⊊ 𝐴 ) ) |
13 |
12
|
ancoms |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐵 ∈ 𝐴 ↔ 𝐵 ⊊ 𝐴 ) ) |
14 |
13
|
notbid |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ¬ 𝐵 ∈ 𝐴 ↔ ¬ 𝐵 ⊊ 𝐴 ) ) |
15 |
11 14
|
bitrd |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ⊊ 𝐴 ) ) |
16 |
9 10 15
|
syl2an |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ⊊ 𝐴 ) ) |
17 |
8 16
|
sylibrd |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) → ( 𝐴 ≼ 𝐵 → 𝐴 ⊆ 𝐵 ) ) |
18 |
|
ssdomfi2 |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ On ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ≼ 𝐵 ) |
19 |
18
|
3expia |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵 ) ) |
20 |
1 19
|
sylan |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵 ) ) |
21 |
17 20
|
impbid |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) → ( 𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) |