Metamath Proof Explorer


Theorem nndomog

Description: Cardinal ordering agrees with ordinal number ordering when the smaller number is a natural number. Compare with nndomo when both are natural numbers. (Contributed by NM, 17-Jun-1998) Generalize from nndomo . (Revised by RP, 5-Nov-2023) Avoid ax-pow . (Revised by BTernaryTau, 29-Nov-2024)

Ref Expression
Assertion nndomog ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) → ( 𝐴𝐵𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 nnfi ( 𝐴 ∈ ω → 𝐴 ∈ Fin )
2 domnsymfi ( ( 𝐴 ∈ Fin ∧ 𝐴𝐵 ) → ¬ 𝐵𝐴 )
3 1 2 sylan ( ( 𝐴 ∈ ω ∧ 𝐴𝐵 ) → ¬ 𝐵𝐴 )
4 3 ex ( 𝐴 ∈ ω → ( 𝐴𝐵 → ¬ 𝐵𝐴 ) )
5 php2 ( ( 𝐴 ∈ ω ∧ 𝐵𝐴 ) → 𝐵𝐴 )
6 5 ex ( 𝐴 ∈ ω → ( 𝐵𝐴𝐵𝐴 ) )
7 4 6 nsyld ( 𝐴 ∈ ω → ( 𝐴𝐵 → ¬ 𝐵𝐴 ) )
8 7 adantr ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 → ¬ 𝐵𝐴 ) )
9 nnord ( 𝐴 ∈ ω → Ord 𝐴 )
10 eloni ( 𝐵 ∈ On → Ord 𝐵 )
11 ordtri1 ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴𝐵 ↔ ¬ 𝐵𝐴 ) )
12 ordelpss ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐵𝐴𝐵𝐴 ) )
13 12 ancoms ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐵𝐴𝐵𝐴 ) )
14 13 notbid ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ¬ 𝐵𝐴 ↔ ¬ 𝐵𝐴 ) )
15 11 14 bitrd ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴𝐵 ↔ ¬ 𝐵𝐴 ) )
16 9 10 15 syl2an ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 ↔ ¬ 𝐵𝐴 ) )
17 8 16 sylibrd ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) → ( 𝐴𝐵𝐴𝐵 ) )
18 ssdomfi2 ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ On ∧ 𝐴𝐵 ) → 𝐴𝐵 )
19 18 3expia ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ On ) → ( 𝐴𝐵𝐴𝐵 ) )
20 1 19 sylan ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) → ( 𝐴𝐵𝐴𝐵 ) )
21 17 20 impbid ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) → ( 𝐴𝐵𝐴𝐵 ) )