| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							php2 | 
							⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ⊊  𝐴 )  →  𝐵  ≺  𝐴 )  | 
						
						
							| 2 | 
							
								1
							 | 
							ex | 
							⊢ ( 𝐴  ∈  ω  →  ( 𝐵  ⊊  𝐴  →  𝐵  ≺  𝐴 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							domnsym | 
							⊢ ( 𝐴  ≼  𝐵  →  ¬  𝐵  ≺  𝐴 )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							nsyli | 
							⊢ ( 𝐴  ∈  ω  →  ( 𝐴  ≼  𝐵  →  ¬  𝐵  ⊊  𝐴 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  On )  →  ( 𝐴  ≼  𝐵  →  ¬  𝐵  ⊊  𝐴 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							nnord | 
							⊢ ( 𝐴  ∈  ω  →  Ord  𝐴 )  | 
						
						
							| 7 | 
							
								
							 | 
							eloni | 
							⊢ ( 𝐵  ∈  On  →  Ord  𝐵 )  | 
						
						
							| 8 | 
							
								
							 | 
							ordtri1 | 
							⊢ ( ( Ord  𝐴  ∧  Ord  𝐵 )  →  ( 𝐴  ⊆  𝐵  ↔  ¬  𝐵  ∈  𝐴 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							ordelpss | 
							⊢ ( ( Ord  𝐵  ∧  Ord  𝐴 )  →  ( 𝐵  ∈  𝐴  ↔  𝐵  ⊊  𝐴 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							ancoms | 
							⊢ ( ( Ord  𝐴  ∧  Ord  𝐵 )  →  ( 𝐵  ∈  𝐴  ↔  𝐵  ⊊  𝐴 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							notbid | 
							⊢ ( ( Ord  𝐴  ∧  Ord  𝐵 )  →  ( ¬  𝐵  ∈  𝐴  ↔  ¬  𝐵  ⊊  𝐴 ) )  | 
						
						
							| 12 | 
							
								8 11
							 | 
							bitrd | 
							⊢ ( ( Ord  𝐴  ∧  Ord  𝐵 )  →  ( 𝐴  ⊆  𝐵  ↔  ¬  𝐵  ⊊  𝐴 ) )  | 
						
						
							| 13 | 
							
								6 7 12
							 | 
							syl2an | 
							⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  On )  →  ( 𝐴  ⊆  𝐵  ↔  ¬  𝐵  ⊊  𝐴 ) )  | 
						
						
							| 14 | 
							
								5 13
							 | 
							sylibrd | 
							⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  On )  →  ( 𝐴  ≼  𝐵  →  𝐴  ⊆  𝐵 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							ssdomg | 
							⊢ ( 𝐵  ∈  On  →  ( 𝐴  ⊆  𝐵  →  𝐴  ≼  𝐵 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							adantl | 
							⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  On )  →  ( 𝐴  ⊆  𝐵  →  𝐴  ≼  𝐵 ) )  | 
						
						
							| 17 | 
							
								14 16
							 | 
							impbid | 
							⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  On )  →  ( 𝐴  ≼  𝐵  ↔  𝐴  ⊆  𝐵 ) )  |