| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o 𝐵 ) ) |
| 2 |
1
|
eleq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ↑o 𝑥 ) ∈ ω ↔ ( 𝐴 ↑o 𝐵 ) ∈ ω ) ) |
| 3 |
2
|
imbi2d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∈ ω → ( 𝐴 ↑o 𝑥 ) ∈ ω ) ↔ ( 𝐴 ∈ ω → ( 𝐴 ↑o 𝐵 ) ∈ ω ) ) ) |
| 4 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o ∅ ) ) |
| 5 |
4
|
eleq1d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 ↑o 𝑥 ) ∈ ω ↔ ( 𝐴 ↑o ∅ ) ∈ ω ) ) |
| 6 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o 𝑦 ) ) |
| 7 |
6
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ↑o 𝑥 ) ∈ ω ↔ ( 𝐴 ↑o 𝑦 ) ∈ ω ) ) |
| 8 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o suc 𝑦 ) ) |
| 9 |
8
|
eleq1d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ↑o 𝑥 ) ∈ ω ↔ ( 𝐴 ↑o suc 𝑦 ) ∈ ω ) ) |
| 10 |
|
nnon |
⊢ ( 𝐴 ∈ ω → 𝐴 ∈ On ) |
| 11 |
|
oe0 |
⊢ ( 𝐴 ∈ On → ( 𝐴 ↑o ∅ ) = 1o ) |
| 12 |
10 11
|
syl |
⊢ ( 𝐴 ∈ ω → ( 𝐴 ↑o ∅ ) = 1o ) |
| 13 |
|
df-1o |
⊢ 1o = suc ∅ |
| 14 |
|
peano1 |
⊢ ∅ ∈ ω |
| 15 |
|
peano2 |
⊢ ( ∅ ∈ ω → suc ∅ ∈ ω ) |
| 16 |
14 15
|
ax-mp |
⊢ suc ∅ ∈ ω |
| 17 |
13 16
|
eqeltri |
⊢ 1o ∈ ω |
| 18 |
12 17
|
eqeltrdi |
⊢ ( 𝐴 ∈ ω → ( 𝐴 ↑o ∅ ) ∈ ω ) |
| 19 |
|
nnmcl |
⊢ ( ( ( 𝐴 ↑o 𝑦 ) ∈ ω ∧ 𝐴 ∈ ω ) → ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ∈ ω ) |
| 20 |
19
|
expcom |
⊢ ( 𝐴 ∈ ω → ( ( 𝐴 ↑o 𝑦 ) ∈ ω → ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ∈ ω ) ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ↑o 𝑦 ) ∈ ω → ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ∈ ω ) ) |
| 22 |
|
nnesuc |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 ↑o suc 𝑦 ) = ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ) |
| 23 |
22
|
eleq1d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ↑o suc 𝑦 ) ∈ ω ↔ ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ∈ ω ) ) |
| 24 |
21 23
|
sylibrd |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ↑o 𝑦 ) ∈ ω → ( 𝐴 ↑o suc 𝑦 ) ∈ ω ) ) |
| 25 |
24
|
expcom |
⊢ ( 𝑦 ∈ ω → ( 𝐴 ∈ ω → ( ( 𝐴 ↑o 𝑦 ) ∈ ω → ( 𝐴 ↑o suc 𝑦 ) ∈ ω ) ) ) |
| 26 |
5 7 9 18 25
|
finds2 |
⊢ ( 𝑥 ∈ ω → ( 𝐴 ∈ ω → ( 𝐴 ↑o 𝑥 ) ∈ ω ) ) |
| 27 |
3 26
|
vtoclga |
⊢ ( 𝐵 ∈ ω → ( 𝐴 ∈ ω → ( 𝐴 ↑o 𝐵 ) ∈ ω ) ) |
| 28 |
27
|
impcom |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ↑o 𝐵 ) ∈ ω ) |