Metamath Proof Explorer


Theorem nnehalf

Description: The half of an even positive integer is a positive integer. (Contributed by AV, 28-Jun-2021)

Ref Expression
Assertion nnehalf ( ( 𝑁 ∈ ℕ ∧ 2 ∥ 𝑁 ) → ( 𝑁 / 2 ) ∈ ℕ )

Proof

Step Hyp Ref Expression
1 nnnn0 ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 )
2 nn0ehalf ( ( 𝑁 ∈ ℕ0 ∧ 2 ∥ 𝑁 ) → ( 𝑁 / 2 ) ∈ ℕ0 )
3 1 2 sylan ( ( 𝑁 ∈ ℕ ∧ 2 ∥ 𝑁 ) → ( 𝑁 / 2 ) ∈ ℕ0 )
4 nn0enne ( 𝑁 ∈ ℕ → ( ( 𝑁 / 2 ) ∈ ℕ0 ↔ ( 𝑁 / 2 ) ∈ ℕ ) )
5 4 adantr ( ( 𝑁 ∈ ℕ ∧ 2 ∥ 𝑁 ) → ( ( 𝑁 / 2 ) ∈ ℕ0 ↔ ( 𝑁 / 2 ) ∈ ℕ ) )
6 3 5 mpbid ( ( 𝑁 ∈ ℕ ∧ 2 ∥ 𝑁 ) → ( 𝑁 / 2 ) ∈ ℕ )