Metamath Proof Explorer


Theorem nnenom

Description: The set of positive integers (as a subset of complex numbers) is equinumerous to omega (the set of finite ordinal numbers). (Contributed by NM, 31-Jul-2004) (Revised by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion nnenom ℕ ≈ ω

Proof

Step Hyp Ref Expression
1 omex ω ∈ V
2 nn0ex 0 ∈ V
3 eqid ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω )
4 3 hashgf1o ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) : ω –1-1-onto→ ℕ0
5 f1oen2g ( ( ω ∈ V ∧ ℕ0 ∈ V ∧ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) : ω –1-1-onto→ ℕ0 ) → ω ≈ ℕ0 )
6 1 2 4 5 mp3an ω ≈ ℕ0
7 nn0ennn 0 ≈ ℕ
8 6 7 entr2i ℕ ≈ ω