Step |
Hyp |
Ref |
Expression |
1 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
2 |
|
zesq |
⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 / 2 ) ∈ ℤ ↔ ( ( 𝑁 ↑ 2 ) / 2 ) ∈ ℤ ) ) |
3 |
1 2
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 / 2 ) ∈ ℤ ↔ ( ( 𝑁 ↑ 2 ) / 2 ) ∈ ℤ ) ) |
4 |
|
nnrp |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) |
5 |
4
|
rphalfcld |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 / 2 ) ∈ ℝ+ ) |
6 |
5
|
rpgt0d |
⊢ ( 𝑁 ∈ ℕ → 0 < ( 𝑁 / 2 ) ) |
7 |
|
nnsqcl |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ↑ 2 ) ∈ ℕ ) |
8 |
7
|
nnrpd |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ↑ 2 ) ∈ ℝ+ ) |
9 |
8
|
rphalfcld |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 ↑ 2 ) / 2 ) ∈ ℝ+ ) |
10 |
9
|
rpgt0d |
⊢ ( 𝑁 ∈ ℕ → 0 < ( ( 𝑁 ↑ 2 ) / 2 ) ) |
11 |
6 10
|
2thd |
⊢ ( 𝑁 ∈ ℕ → ( 0 < ( 𝑁 / 2 ) ↔ 0 < ( ( 𝑁 ↑ 2 ) / 2 ) ) ) |
12 |
3 11
|
anbi12d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝑁 / 2 ) ∈ ℤ ∧ 0 < ( 𝑁 / 2 ) ) ↔ ( ( ( 𝑁 ↑ 2 ) / 2 ) ∈ ℤ ∧ 0 < ( ( 𝑁 ↑ 2 ) / 2 ) ) ) ) |
13 |
|
elnnz |
⊢ ( ( 𝑁 / 2 ) ∈ ℕ ↔ ( ( 𝑁 / 2 ) ∈ ℤ ∧ 0 < ( 𝑁 / 2 ) ) ) |
14 |
|
elnnz |
⊢ ( ( ( 𝑁 ↑ 2 ) / 2 ) ∈ ℕ ↔ ( ( ( 𝑁 ↑ 2 ) / 2 ) ∈ ℤ ∧ 0 < ( ( 𝑁 ↑ 2 ) / 2 ) ) ) |
15 |
12 13 14
|
3bitr4g |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 / 2 ) ∈ ℕ ↔ ( ( 𝑁 ↑ 2 ) / 2 ) ∈ ℕ ) ) |