Metamath Proof Explorer
Description: Exponentiation with a successor exponent. Definition 8.30 of
TakeutiZaring p. 67. (Contributed by Mario Carneiro, 14-Nov-2014)
|
|
Ref |
Expression |
|
Assertion |
nnesuc |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ↑o suc 𝐵 ) = ( ( 𝐴 ↑o 𝐵 ) ·o 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nnon |
⊢ ( 𝐴 ∈ ω → 𝐴 ∈ On ) |
2 |
|
onesuc |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 ↑o suc 𝐵 ) = ( ( 𝐴 ↑o 𝐵 ) ·o 𝐴 ) ) |
3 |
1 2
|
sylan |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ↑o suc 𝐵 ) = ( ( 𝐴 ↑o 𝐵 ) ·o 𝐴 ) ) |