Metamath Proof Explorer


Theorem nneven

Description: An alternate characterization of an even positive integer. (Contributed by AV, 5-Jun-2023)

Ref Expression
Assertion nneven ( ( 𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) → ( 𝑁 / 2 ) ∈ ℕ )

Proof

Step Hyp Ref Expression
1 nnre ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ )
2 2re 2 ∈ ℝ
3 2 a1i ( 𝑁 ∈ ℕ → 2 ∈ ℝ )
4 nngt0 ( 𝑁 ∈ ℕ → 0 < 𝑁 )
5 2pos 0 < 2
6 5 a1i ( 𝑁 ∈ ℕ → 0 < 2 )
7 1 3 4 6 divgt0d ( 𝑁 ∈ ℕ → 0 < ( 𝑁 / 2 ) )
8 evendiv2z ( 𝑁 ∈ Even → ( 𝑁 / 2 ) ∈ ℤ )
9 7 8 anim12ci ( ( 𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) → ( ( 𝑁 / 2 ) ∈ ℤ ∧ 0 < ( 𝑁 / 2 ) ) )
10 elnnz ( ( 𝑁 / 2 ) ∈ ℕ ↔ ( ( 𝑁 / 2 ) ∈ ℤ ∧ 0 < ( 𝑁 / 2 ) ) )
11 9 10 sylibr ( ( 𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) → ( 𝑁 / 2 ) ∈ ℕ )