Description: Natural numbers are finite sets. (Contributed by Stefan O'Rear, 21-Mar-2015) Avoid ax-pow . (Revised by BTernaryTau, 23-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | nnfi | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ Fin ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enrefnn | ⊢ ( 𝐴 ∈ ω → 𝐴 ≈ 𝐴 ) | |
2 | breq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐴 ≈ 𝑥 ↔ 𝐴 ≈ 𝐴 ) ) | |
3 | 2 | rspcev | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐴 ≈ 𝐴 ) → ∃ 𝑥 ∈ ω 𝐴 ≈ 𝑥 ) |
4 | 1 3 | mpdan | ⊢ ( 𝐴 ∈ ω → ∃ 𝑥 ∈ ω 𝐴 ≈ 𝑥 ) |
5 | isfi | ⊢ ( 𝐴 ∈ Fin ↔ ∃ 𝑥 ∈ ω 𝐴 ≈ 𝑥 ) | |
6 | 4 5 | sylibr | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ Fin ) |