Metamath Proof Explorer


Theorem nnfi

Description: Natural numbers are finite sets. (Contributed by Stefan O'Rear, 21-Mar-2015) Avoid ax-pow . (Revised by BTernaryTau, 23-Sep-2024)

Ref Expression
Assertion nnfi ( 𝐴 ∈ ω → 𝐴 ∈ Fin )

Proof

Step Hyp Ref Expression
1 enrefnn ( 𝐴 ∈ ω → 𝐴𝐴 )
2 breq2 ( 𝑥 = 𝐴 → ( 𝐴𝑥𝐴𝐴 ) )
3 2 rspcev ( ( 𝐴 ∈ ω ∧ 𝐴𝐴 ) → ∃ 𝑥 ∈ ω 𝐴𝑥 )
4 1 3 mpdan ( 𝐴 ∈ ω → ∃ 𝑥 ∈ ω 𝐴𝑥 )
5 isfi ( 𝐴 ∈ Fin ↔ ∃ 𝑥 ∈ ω 𝐴𝑥 )
6 4 5 sylibr ( 𝐴 ∈ ω → 𝐴 ∈ Fin )