Metamath Proof Explorer


Theorem nnfiOLD

Description: Obsolete version of nnfi as of 23-Sep-2024. (Contributed by Stefan O'Rear, 21-Mar-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion nnfiOLD ( 𝐴 ∈ ω → 𝐴 ∈ Fin )

Proof

Step Hyp Ref Expression
1 onfin2 ω = ( On ∩ Fin )
2 inss2 ( On ∩ Fin ) ⊆ Fin
3 1 2 eqsstri ω ⊆ Fin
4 3 sseli ( 𝐴 ∈ ω → 𝐴 ∈ Fin )