Step |
Hyp |
Ref |
Expression |
1 |
|
nnind.1 |
⊢ ( 𝑥 = 1 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
nnind.2 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) |
3 |
|
nnind.3 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝜑 ↔ 𝜃 ) ) |
4 |
|
nnind.4 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) |
5 |
|
nnind.5 |
⊢ 𝜓 |
6 |
|
nnind.6 |
⊢ ( 𝑦 ∈ ℕ → ( 𝜒 → 𝜃 ) ) |
7 |
|
1nn |
⊢ 1 ∈ ℕ |
8 |
1
|
elrab |
⊢ ( 1 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ↔ ( 1 ∈ ℕ ∧ 𝜓 ) ) |
9 |
7 5 8
|
mpbir2an |
⊢ 1 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } |
10 |
|
elrabi |
⊢ ( 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } → 𝑦 ∈ ℕ ) |
11 |
|
peano2nn |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ∈ ℕ ) |
12 |
11
|
a1d |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ∈ ℕ ) ) |
13 |
12 6
|
anim12d |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝑦 ∈ ℕ ∧ 𝜒 ) → ( ( 𝑦 + 1 ) ∈ ℕ ∧ 𝜃 ) ) ) |
14 |
2
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ↔ ( 𝑦 ∈ ℕ ∧ 𝜒 ) ) |
15 |
3
|
elrab |
⊢ ( ( 𝑦 + 1 ) ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ↔ ( ( 𝑦 + 1 ) ∈ ℕ ∧ 𝜃 ) ) |
16 |
13 14 15
|
3imtr4g |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } → ( 𝑦 + 1 ) ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ) ) |
17 |
10 16
|
mpcom |
⊢ ( 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } → ( 𝑦 + 1 ) ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ) |
18 |
17
|
rgen |
⊢ ∀ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ( 𝑦 + 1 ) ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } |
19 |
|
peano5nni |
⊢ ( ( 1 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ∧ ∀ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ( 𝑦 + 1 ) ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ) → ℕ ⊆ { 𝑥 ∈ ℕ ∣ 𝜑 } ) |
20 |
9 18 19
|
mp2an |
⊢ ℕ ⊆ { 𝑥 ∈ ℕ ∣ 𝜑 } |
21 |
20
|
sseli |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ) |
22 |
4
|
elrab |
⊢ ( 𝐴 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ↔ ( 𝐴 ∈ ℕ ∧ 𝜏 ) ) |
23 |
21 22
|
sylib |
⊢ ( 𝐴 ∈ ℕ → ( 𝐴 ∈ ℕ ∧ 𝜏 ) ) |
24 |
23
|
simprd |
⊢ ( 𝐴 ∈ ℕ → 𝜏 ) |